【Abstract】ObjectiveTo investigate the relationship between galectin-3 and tumour metastasis, and the future prospect of galectin-3 in clinic.MethodsRelated articles were reviewed. ResultsGalectin-3, a member of the β-galactoside-binding proteins, is expressed widely in epithelial and immune cells, and interacts with intracellular glycoproteins, cell surface molecules and extracellular matrix proteins. Galectin-3 is involved in various biological phenomena including cell growth, adhesion, differentiation, angiogenesis and apoptosis, and is associated with invasion and metastasis of tumour. ConclusionBecause of the correlation between galectin-3 and tumour invasion and metastasis, galectin-3 may act as the diagnostic marker for tumour metastasis and one of the target proteins for cancer treatment.
Objective To study the differentiation of the human osteoblasts during the construction of the tissue engineered periosteum with the human acellular amniotic membrane(HAAM).Methods To construct the tissue engineered periosteum (n=60) with HAAM, the human fetal osteoblasts were used. The fetal osteoblasts were cultured for 2, 4, 6, 8, and10 days, and then their total RNA was extracted, which were reversely transcripted to cDNA. The realtime PCR analysis was used to reveal Cbfal and Osterix, and the cycle threshold (Ct) was also measured. The simplycultured osteoblasts were used as the control group (n=20).Results The expression of Cbfa1 was higher in the experimental group on the 2nd day when compared with that on the 4th, 6th, and 8th day(P<0.05). The same result existed on the 10th day when compared with that on the 4th and 8th day. The expression of Osterix increased and was highest on the 8th day when compared with the other results(P<0.05). Both of the 2 gene expressions were decreased in the control group when compared with those in the experimental group, but with no significant difference(P>0.05). Conclusion Cbfa1 and Osterix can be normally expressed by the osteoblasts after their integration with HAAM. As a scaffold, HAAM can be used to keep the osteoblast phenotype and differentiation with an osteoconductive ability. Such a cell-scaffold complex may provide a basis for the osteogenesis.
OBJECTIVE To investigate the feasibility of repairing the whole layer defects of tibial plateau by implanting tissue-engineering cartilage. METHODS: The chondrocytes of 2-week-old rabbits were cultured and transferred to the 3rd generation, and mixed with human placenta collagen-sponge. The whole layer defects of tibial plateau in adult rabbits were repaired by the tissue-engineering cartilage in the experimental group; the defects were left un-repaired in control group. The repair results of defects were observed after 4, 12 and 24 weeks. RESULTS: In experimental group, no obvious new cartilage formation was seen 4 weeks after operation; some new cartilage formation was found after 12 weeks. Histological observation showed that chondrocytes had irregular edge, honeycombing structure and that cartilage cavities formed around the chondrocytes. After 24 weeks, obvious new cartilage formation was found with smooth surface, and linked with the tissues around it, but the defect was not repaired completely; histological results showed that cartilage cavities formed and that cartilage matrix was stained positively for toluidine blue. In control group, the defect was not repaired. CONCLUSION: The tissue-engineering cartilage can repair the defects of the whole layer cartilage of tibial plateau in rabbits, it is feasible to repair the whole layer cartilage defects of tibial plateau by this method.
Objective To compare biological characteristics between articular chondrocyte and meniscal fibrochondrocyte cultured in vitro andto investigate the possibility of using cultured cartilage as a substitute for meniscus.Methods Chondrocytes isolated from articular cartilage and meniscus of rabbits aged 3 weeks were respectively passaged in monolayer and cultured in centrifuge tube. Cartilages cultured in centrifuge tube and meniscus of rabbit aged 6 weeks were detected by histological examination and transmission electron microscopy. Growth curves of articular chondrocytes and meniscalfibrochondrocytes were compared; meanwhile, cell cycles of articular chondrocytes and meniscal fibrochondrocytes in passage 2and 4 were separately measured by flow cytometry.Results Articular chondrocytes in passage 4 were dedifferentiated. Articular chondrocytes formed cartilage 2 weeks after cultivation in centrifuge tube, but meniscal fibrochondrocytes could not generate cartilage. The differences in ultrastructure and histology obviously existed between cultured cartilage and meniscus; moreover, apoptosis of chondrocytes appeared in cultured cartilage. Proportion of subdiploid cells in articular chondrocytes passage 2 and 4 was markedly higher than that in passage 2 and 4 fibrochondrocytes(Plt;0.05). Conclusion Meniscal fibrochondrocytes can not form cartilage after cultivationin centrifuge tube, while cartilage cultured in centrifuge tube from articular chondrocytes can not be used as graft material for meniscus. Articular cartilage ismarkedly different from meniscus.
Objective To review and summarize the latest development of the therapy for the Duchenne muscular dystrophy (DMD). Methods Therecentlypublished articles related to the therapies for DMD were extensively reviewed and briefly summarized. Results The therapeutic approaches for DMD included the gene therapy, the cell therapy, and the pharmacological therapy. The gene therapy and the cell therapy were focused on the treatment for the cause of DMD by the delivery of the missing gene, the modification of the mutated gene, and the transfer of the normal cells including the stem cells, while the pharmacological therapy dealt with the downstream events caused by the dystrophin gene defect, slowed down the pathologic progress of DMD, and improved the DMD patient’s life quality and life span, by medication and other factor treatments. Conclusion There is still no cure for DMD because of various difficulties in replacing or repairing thedefected gene and of the multifaceted nature of the severe symptoms. Therefore,it is imperative for us to find out a more effective treatment that can solve these problems.
OBJECTIVE: To explore the SV40-mediated immortalization, the related factors and their roles in cell immortalization. METHODS: The original articles about cell immortalization and replicative senescence in recent decade were reviewed. RESULTS: Cell immortalization was a multifaceted phenomenon, it was involved in viral DNA integration, activation of telomerase, inactivation of growth suppressors, and so on, and their roles were closely related. CONCLUSION: The research on cell immortalization may be expected to provide important insights into a broad range of cellular biological phenomenon, and the immortalized cells can play important roles in the research of cell engineering and tissue engineering as standard cells.
Objective To investigate the effects of human acellularamnion membrane on SD rat tendon adhesion and to obtain the experimental data for clinical application in preventing postoperative tendon adhesion. Methods The tendons of 28 adult SD rats hindlimb were cut and sutured. The tendons of left hindlimb were encapsulated by human accellular amnion membraneas the experimental group and the ones of the other side were not encapsulatedas control group. The rats were killed 1, 2, 4, 6, 8 and 12 weeks after operation. The results were evaluated grossly and histologically. Results There were no differences in healing of injury tendon and inflammatory response between the two groups. The anatomical and histological results showed the experimental group had less adhesion than the control group(Plt;0.05). Conclusion Human acellular amnion membrane can prevent adhesion of tendonwithout affecting tendon healing and is an optimal biological material to prevent tendon adhesion.
Objective To study the gene expressions of human osteoblasts during the construction of tissue engineered bone with the bioderived material. Methods The fetal osteoblasts were used to construct tissue engineered bone with the bio-derived material and then were cultured 2,4,6,8 and 10 days in vitro. Real-time PCR analysis indicated that Cbfa 1, Osterix, Collagen type Ⅰ,osteocalcin(OC) and Integrin α5 and β1 were present in osteoblasts with bio-derived materials.Results The change ofCbfa1 was consistent with the change of Osterix. On 2nd day and 8th day, the expression of Osterix in experimental group was higher than that in control group, P<0.05. Collagen type Ⅰ’s change was consistent with change of OC expression, and its expression was higher in experimental group than that in control group on 2nd, 4th, 6th and 8th day. The Integrinexpression was high all along. Conclusion The important genes can be expressed normally by integrating osteoblasts with bioderived scaffolds. As skeleton tissue engineering scaffold, the bio-derived bone is conducive to keepthe osteoblast’s phenotype and differentiation with osteoconductive ability. The osteoblast can enter proliferation stage favorably and the scaffold materials exert no effects on it. Bio-derived bone can also supply more space for cellsto proliferate. The bio-derived materials promote osteoblasts adhesion.