Hypoxia inducible factor-1 (HIF-1) is the main transcription factor and the core regulator for cells to adapt to hypoxia, and oxygen homeostasis is achieved by controlling and utilizing oxygen delivery. Autophagy and apoptosis play an important role in determining cell fate and maintaining cell homeostasis. In recent years, it has been found that the dynamic change of HIF-1 expression plays a key role in the hypoxic adaptive response of cardiomyocytes. The regulation of HIF-1 on autophagy and apoptosis of hypoxic cardiomyocytes determines the survival of cardiomyocytes, which is of great significance for the prognosis of ischemic heart disease.
ObjectiveTo evaluate the effects of icariin on autophagy induced by low-concentration of glucocorticoid and exosome production in bone microvascular endothelial cells (BMECs).MethodsBMECs were isolated from femoral heads resected in total hip arthroplasty and then intervened with hydrocortisone of low concentration (0, 0.03, 0.06, 0.10 mg/mL), which were set as groups A, B, C, and D, respectively. On the basis of hydrocortisone intervention, 5×10?5 mol/L of icariin was added to each group (set as groups A1, B1, C1 and D1, respectively). Western blot was used to detect the expressions of microtubule-associated protein 1 light chain 3B (LC3B) and dead bone slice 1 (p62) after 24 hours. Exosomes were extracted from BMECs treated with icariin (intervention group) and without icariin (non-intervention group), and the diameter and concentration of exosomes were evaluated by nanoparticle tracking analysis technique. The total protein content of exosomes was detected by BCA method, and the expressions of proteins carried by exosomes including CD9, CD81, transforming growth factor β1 (TGF-β1), and vascular endothelial growth factor A (VEGFA) were assessed by Western blot. The BMECs were further divided into three groups: BMECs in the experimental group and the control group were co-cultured with exosomes secreted by BMECs treated with or without icariin, respectively; the blank control group was BMECs without exosome intervention. The three groups were treated with hydrocortisone and Western blot was used to detect the expressions of LC3B and p62. The scratching assay was used to detect cell migration ability; angiogenic ability of BMECs was also assessed.ResultsWith the increase of hydrocortisone concentration, the protein expression of LC3B-Ⅱ increased gradually, and the protein expression of p62 decreased gradually (P<0.01). Compared with group with same concentration of hydrocortisone, the protein expression of LC3B-Ⅱ decreased and the protein expression of p62 increased after the administration of icariin (P<0.01). The concentration of exosomes in the intervention group was significantly higher than that in the non-intervention group (t=?10.191, P=0.001); and there was no significant difference in exosome diameter and total protein content between the two groups (P>0.05). CD9 and CD81 proteins were highly expressed in the non-intervention group and the intervention group, and the relative expression ratios of VEGFA/CD9 and TGF-β1/CD9 proteins in the intervention group were significantly higher than those in the non-intervention group (P<0.01). After co-culture of exosomes, the protein expression of p62 increased in blank control group, control group, and experimental group, while the protein expression of LC3B-Ⅱ decreased. There were significant differences among groups (P<0.05). When treated with hydrocortisone for 12 and 24 hours, the scratch closure rate of the control group and experimental group was significantly higher than that of the blank control group (P<0.05), and the scratch closure rate of the experimental group was significantly higher than that of the control group (P<0.05). When treated with hydrocortisone for 4 and 8 hours, the number of lumens, number of sprouting vessels, and length of tubule branches in the experimental group and the control group were significantly greater than those in the blank control group (P<0.05); the length of tubule branches and the number of lumens in the experimental group were significantly greater than those in the control group (P<0.05).ConclusionIcariin and BMECs-derived exosomes can improve the autophagy of BMECs induced by low concentration of glucocorticoid.
Atherosclerotic cardiovascular disease (ASCVD) is a disease caused by the accumulation of atherosclerotic plaques that leads to arterial hardening and impairment of contractility. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can increase low-density lipoprotein cholesterol levels in plasma, which accelerates the development and progression of ASCVD. This article intends to review the biological characteristics and functional mechanisms of PCSK9, elucidate its impact on the development and progression of ASCVD, provide research literature support for the diagnosis and treatment of such diseases and improving the prognosis of patients.
Objective To analyze the hotspots and development trends in the research field of tumor cell apoptosis and autophagy. Methods Relevant literature on tumor apoptosis and autophagy published between January 2012 and December 2021 were searched through the Web of Science core collection database, and CiteSpace 5.8.R3 software and VOSviewer version 1.6.10 software were used to analyze the country/region, institution, keywords and citation node information of the literature. Results A total of 6716 foreign-language articles were included in the study after searching and screening, and the number of papers showed a linear upward trend year by year. China published the largest number of articles and cooperated closely with other research institutions, but there were not many high-quality and influential articles. The two journals Autophagy and Cell were more authoritative in the field of tumor apoptosis and autophagy research. The signaling pathways and related proteins of apoptosis and autophagy, and the study of tumor suppressor mechanisms based on apoptosis/autophagy were current research hot topics. The migration, apoptosis and epithelial mesenchymal transformation of cancer cells would be the research focus and direction in the future. Conclusions In the past 10 years, the research on tumor apoptosis and autophagy has continued to develop. With the in-depth research on the molecular level, the study of its mechanism is expected to further reveal the mystery of tumor apoptosis and autophagy.
Objective
To explore the relationship between Beclin-1 and the development of pancreatic ductal adenocarcinoma (PDAC).
Methods
① Twenty-five PDAC specimens and 20 matched adjacent normal pancreatic tissues were obtained after radical surgery between April 2009 and November 2009 in West China Hospital of Sichuan University. Beclin-1 mRNA and protein expressions were examined by using real-time PCR and immunohistochemistry, respectively. Correlations between expressions of Beclin-1 protein with clinical data of PDAC patients were evaluated. ② PDAC cells were divided into 2 groups, cells of transfection group were transfected with PLenO-WPI-Beclin-1 vector, and cells of non-transfection group didn’t transfected with PLenO-WPI-Beclin-1 vector. Expressions levels of Beclin-1 mRNA in the 2 groups were detected by real-time PCR at 24 hours and 48 hours after transfection. ③ PDAC cells were divided into 3 groups, cells of transfection group were transfected with PLenO-WPI-Beclin-1 vector, cells of empty vector group transfected with PLenO-WPI, cells of blank control group didn’t accepted any vector. OD value was detected by MTT once a day during 1–7 days after transfection.
Results
① Expression levels of Beclin-1 mRNA and its protein were significantly lower in PDAC tissue than those of adjacent normal pancreatic tissues (P<0.05). Increased Beclin-1 expression was associated with early TNM stage of Ⅰ and Ⅱ(P<0.05) and negative distant metastasis (P=0.011). ② At the same time point of 24 hours and 48 hours after transfection, the expression levels of Beclin-1 mRNA were higher in transfection group than those of non-transfection group (P<0.05). ③ MTT assay showed that PANC-1 cell proliferation ability was lower in the transfection group compared to the blank control group and empty vector groups in vitro on day 4–7 after transfection (P<0.05), but there was no significant in the cell proliferation ability among the 3 groups on day 1, 2, and 3 (P>0.05).
Conclusions
Down regulation of Beclin-1 and autophagy inhibition play an important role in the tumorigenesis and development of PDAC. Activating autophagy via overexpression of Beclin-1 may be a potential treatment for some PDACs and warrants further investigation.
ObjectiveTo investigate the mechanism of early vascularization of the tissue engineered bone in the treatment of rabbit radial bone defect by local injection of angiopoietin 2 (Ang-2).MethodsForty-eight New Zealand white rabbits were established unilateral 1.5 cm long radius defect models. After implantation of hydroxyapatite/collagen scaffolds in bone defects, the rabbits were randomly divided into 2 groups: control group (group A) and Ang-2 group (group B) were daily injected with 1 mL normal saline and 1 mL saline-soluble 400 ng/mL Ang-2 at the bone defect within 2 weeks after operation, respectively. Western blot was used to detect the expressions of autophagy related protein [microtubule associated protein 1 light chain 3 (LC3), Beclin-1], angiogenesis related protein [vascular endothelial growth factor (VEGF)], and autophagy degradable substrate protein (SQSTMl/p62) in callus. X-ray films examination and Lane-Sandhu X-ray scoring were performed to evaluate the bone defect repair at 4, 8, and 12 weeks after operation. The rabbits were sacrificed at 12 weeks after operation for gross observation, and the angiogenesis of bone defect area was observed by HE staining.ResultsWestern blot assay showed that the relative expressions of LC3-Ⅱ/LC3-Ⅰ, Beclin-1, and VEGF in group B were significantly higher than those in group A, and the relative expression of SQSTMl/p62 was significantly lower than that in group A (P<0.05). Radiographic and gross observation of specimens showed that only a few callus were formed in group A, the bone defect was not repaired; more callus were formed and complete repair of bone defect was observed in group B. The Lane-Sandhu scores in group B were significantly higher than those in group A at 4, 8, and 12 weeks after operation (P<0.05). HE staining showed that the Harvard tubes in group B were well arranged and the number of new vessels was significantly higher than that in group A (t=–11.879, P=0.000).ConclusionLocal injection of appropriate concentration of Ang-2 may promote early vascularization and bone defect repair of tissue engineered bone in rabbits by enhancing autophagy.
Cell autophagy plays a key role in maintaining intracellular nutritional homeostasis during starvation through elimination of aberrant or obsolete cellular structures. The cellular cytoskeleton has a crucial role in multiple processes involving membrane rearrangements and vesicle-mediated events. Autophagy is mediated by both microtubules and actin networks: microtubules promote the synthesis of autophagosome and are related to the movement of autophagosome; actin networks have been implicated in structurally supporting the expanding of phagophore, moving autophagosomes and enabling their efficient fusion with the lysosome; non-muscle myosinⅡoperates in the early stages of autophagy during the initiation and expansion of the phagophore, whereas myosinⅥ and myosin 1C are involved in the late stages of autophagosome maturation and fusion with the lysosome, respectively. This review summarizes the multiple regulation of cytoskeleton on autophagy and focuses on the regulation of autophagy by actin and myosin, providing a new approach for the study of pathogenesis and innovative therapies of autophagy related diseases.
ObjectiveTo investigate the role of p22phox and NOX5 in autophagy and apoptosis of osteoblasts induced by hypoxia.MethodsThe skull tissue of newborn rats was cut into small pieces, and the osteoblasts were separated and purified by the tissue block adherent method and the differential adherent method. The first generation cells were harvested and identified by HE staining, Alizarin red staining, alkaline phosphatase (ALP) staining, and flow cytometry. A three-gas incubator was used to prepare a hypoxia model of osteoblasts. At 0, 3, 6, 12, and 24 hours of hypoxia, the expressions of p22phox, NOX5, and LC3Ⅱ/Ⅰ were detected by Western blot, and the level of reactive oxygen species (ROS) and cell apoptosis rate were detected by flow cytometry. And the time point of the highest level of ROS was selected as the hypoxia time point for subsequent experiments. The first generation osteoblasts were divided into normal group, si-p22phox hypoxia group, and si-NOX5 hypoxia group and subjected to corresponding transfection and hypoxia treatment. The inhibition efficiency of si-p22phox and si-NOX5 were detected by RT-PCR. Then the osteoblasts were divided into normal group, si-NC hypoxia group, si-p22phox hypoxia group, and si-NOX5 hypoxia group. After transfection and hypoxia treatment, Western blot was used to detect the expressions of p22phox, NOX5, autophagy-related proteins (LC3Ⅱ/Ⅰ, Beclin), and apoptosis-related proteins (Bcl-2, Bax), and flow cytometry was used to detect the cell apoptosis rate and level of ROS. The first generation osteoblasts were divided into a hypoxia group for 12 hours (hypoxia group) and a group that simultaneously inhibited si-p22phox and si-NOX5 and hypoxia for 12 hours (inhibition+hypoxia group). The expressions of Beclin and Bax were observed by immunofluorescence staining after the corresponding treatment.ResultsAfter identification, the isolated cells were osteoblasts. After hypoxia treatment, the relative expressions of p22phox, NOX5, and LC3Ⅱ/Ⅰ proteins and the apoptosis rate of osteoblasts gradually increased (P<0.05), and the level of ROS also significantly increased (P<0.05) and reached the peak value at 12 hours. The 12-hour hypoxia model was selected for subsequent experiments. Silencing the p22phox gene did not affect the expression of NOX5, and silencing the NOX5 gene did not affect the expression of p22phox. Compared with hypoxia treatment, the relative expressions of LC3Ⅱ/Ⅰ, Beclin, and Bax proteins after inhibiting the expression of p22phox or NOX5 gene significantly decreased (P<0.05), the relative expression of Bcl-2 protein significantly increased (P<0.05), the cell apoptosis rate and level of ROS also significantly decreased (P<0.05). After silencing the expressions of p22phox and NOX5 genes at the same time, the immunofluorescence staining showed that the fluorescence of Beclin and Bax were weak.ConclusionInhibiting the expressions of p22phox and NOX5 genes can reduce the level of ROS in osteoblasts under hypoxia-induced conditions, and at the same time reduce autophagy and apoptosis, especially attenuate the excessive apoptosis of cells in the early to late stages, and strengthen the hypoxic osteoblasts proliferation.
Objective
To review the mechanism and effects of cell autophagy in the pathophysiology changes of peripheral nerve injury.
Methods
The recent literature about cell autophagy in peripheral nerve injury and regeneration was extensively reviewed and summarized.
Results
The researches through drugs intervention and gene knockout techniques have confirmed that the Schwann cell autophagy influences the myelin degeneration, debris clearance, inflammatory cells infiltration, and axon regeneration through JNK/c-Jun pathway. To adjust autophagy process could slow down the Wallerian degeneration, maintain the integrity of injured nerve, while the effect on axon regeneration is still controversial.
Conclusion
The Schwann cell autophagy plays a key role in the pathophysiology changes of peripheral nerve injury, the further study of its mechanism could provide new methods for the therapy of peripheral nerve injury.
ObjectiveTo summarize the mechanism of hydrogen sulfide (H2S) in regulating autophagy and ameliorating multi-organ dysfunction in the treatment of sepsis.MethodThe relevant literatures at home and abroad in recent years were systematically searched and read to review the mechanism of H2S in regulating autophagy and ameliorating multi-organ dysfunction during sepsis.ResultsAs a new medical gas signal molecule, H2S could regulate autophagy by regulating multiple signal pathways such as Nrf2, NF-κB, MAPK, AMPK, etc., then ameliorated multi-organ dysfunction in sepsis.ConclusionH2S inhibits inflammation, oxidative stress, and apoptosis by regulating autophagy, thus ameliorating multi-organ dysfunction in sepsis, which is expected to become an effective therapeutic target for sepsis.