1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "biomedical signal" 1 results
        • Evoked Potential Blind Extraction Based on Fractional Lower Order Spatial Time-Frequency Matrix

          The impulsive electroencephalograph (EEG) noises in evoked potential (EP) signals is very strong, usually with a heavy tail and infinite variance characteristics like the acceleration noise impact, hypoxia and etc., as shown in other special tests. The noises can be described by α stable distribution model. In this paper, Wigner-Ville distribution (WVD) and pseudo Wigner-Ville distribution (PWVD) time-frequency distribution based on the fractional lower order moment are presented to be improved. We got fractional lower order WVD (FLO-WVD) and fractional lower order PWVD (FLO-PWVD) time-frequency distribution which could be suitable for α stable distribution process. We also proposed the fractional lower order spatial time-frequency distribution matrix (FLO-STFM) concept. Therefore, combining with time-frequency underdetermined blind source separation (TF-UBSS), we proposed a new fractional lower order spatial time-frequency underdetermined blind source separation (FLO-TF-UBSS) which can work in α stable distribution environment. We used the FLO-TF-UBSS algorithm to extract EPs. Simulations showed that the proposed method could effectively extract EPs in EEG noises, and the separated EPs and EEG signals based on FLO-TF-UBSS were almost the same as the original signal, but blind separation based on TF-UBSS had certain deviation. The correlation coefficient of the FLO-TF-UBSS algorithm was higher than the TF-UBSS algorithm when generalized signal-to-noise ratio (GSNR) changed from 10 dB to 30 dB and α varied from 1.06 to 1.94, and was approximately equal to 1. Hence, the proposed FLO-TF-UBSS method might be better than the TF-UBSS algorithm based on second order for extracting EP signal under an EEG noise environment.

          Release date: Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品