1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "bone morphogenetic protein 2" 24 results
        • EXPERIMENTAL STUDY ON OSTEOINDUCTION OF CORAL COMPOSITED ARTIFICIAL BONE

          OBJECTIVE To improve the osteoinduction of coral and provide a perfect bone graft substitute for clinical bone defects. METHODS By combining coral with collagen and recombinant human bone morphogenetic protein-2(rhBMP-2), coral/collagen/rhBMP-2 composite was obtained. The composite was implanted into the back muscle pouches of mice, and coral/collagen or coral/rhBMP-2 were implanted as control. The osteoinduction of the composite was assessed by histology and image analysis system. RESULTS The chondrocyte differentiation and matrix formation were observed in local sites after one week, lamellar bone with bone marrow were formed after 4 weeks, and coral were absorbed partially. The quantity of osteoinduction was time-related and rhBMP-2 dose-related(P lt; 0.01). Coral/collagen and coral/rhBMP-2 implants did not show any bone or cartilage formation. CONCLUSION The coral/collagen/rhBMP-2 composite possesses a superior osteoinduction and will be a new type of bone substitute to be used in orthopedic and maxillofacial surgery.

          Release date:2016-09-01 11:05 Export PDF Favorites Scan
        • CONSTRUCTION OF INDUCIBLE LENTIVIRAL VECTOR CONTAINING HUMAN BONE MORPHOGENETIC PROTEIN 2 GENE AND ITS EXPRESSION IN HUMAN UMBILICAL CORD BLOOD MESENCHYMAL STEM CELLS

          Objective To construct inducible lentiviral vector containing human bone morphogenetic protein 2 (hBMP-2) gene and to study its expression in human umbil ical cord blood mesenchymal stem cells (HUMSCs). Methods hBMP-2 gene was ampl ified by PCR from a plasmid and was cloned into pDown by BP reaction. pLV/EXPN2-Neo-TRE-hBMP-2 and pLV/EXPN2-Puro-EF1A-reverse transactivator (rtTA) were obtained with GATEWAY technology, and then were sequenced and analyzed by PCR. The recombinant vectors were transfected into 293FT cells respectively through l ipofectamine, and the lentiviral viruses were harvested from 293FT cells, then the titer was determined. Viruses were used to infect HUMSCs in tandem. In order to research the influence of induction time and concentration, one group of HUMSCs was induced by different doxycl ine concentrations (0, 10, 100 ng/mL, and 1, 10, 100 μg/mL) in the same induction time (48 hours), and the other by the same concentration (10 μg/mL) in different time points (12, 24, 48, and 72 hours). The expression of target gene hBMP-2 was indentified by ELISA method. After 2-week osteogenic induction of transfected HUMSCs, the mineral ization nodes were detected with Al izarin bordeaux staining method. Results Therecombinant inducible lentiviral vectors (pLV/EXPN2-Neo-TRE-hBMP-2 and pLV/EXPN2-Puro-EF1A-rtTA) were successfully constructed. The lentiviruses were also obtained and mediated by 293FT cells, and the virus titers were 3.5 × 108 TU/mL and 9.5 × 107 TU/mL respectively. HUMSCs could expression hBMP-2 by induction of doxycycl ine. The expression of hBMP-2 reached the peak at 10 μg/mL doxycl ine at 48 hours of induction. After 2-week osteogenic induction, a lot of mineral ization nodes were observed. Conclusion The recombinant inducible lentiviral vectors containing hBMP-2 gene can be successfully constructed, which provide an effective and simple method for the further study of stem cells and animal experiment in vivo.

          Release date:2016-08-31 05:43 Export PDF Favorites Scan
        • EFFECTS OF RECOMBINANT HUMAN BONE MORPHOGENETIC PROTEIN 2 ANDOSTEOGENIC AGENTS ON ROLIFERATION AND DIFFERENTIATION OF RAT MESENCHYMAL STEMCELLS

          Objective To investigate the effects of the recombinanthuman bone morphogenetic protein 2 (rhBMP-2) and/or the osteogenic agents on proliferation and expression of the osteoblast phenotype differentiation of the SD rat mesenchymal stem cells(MSCs). Methods The rat MSCs were cultured in vitro and were randomly divided into the experimental groups(Groups A-I) and the control group. In the experimental group, MSCs were induced by rhBMP2 in different doses (10, 50, 100 and 200 μg/L) in Groups BE, the osteogenic agent alone (Group A) and by the combined use of rhBMP-2 [in different doses (10,50, 100 and 200 μg/L)] and the osteogenic agent in Groups F-I. The MTT colorimetric assay was used to evaluate the proliferation, and the activities of alkaline phosphatase (ALP) and osteocalcin (OC) were observed at 3, 6, 9, 12 days, respectively. Results The inverted phase contrast microscopy showed that MSCs by primary culture for 12 hours were adhibited, with a fusiform shape at 48 hours. At 4 days they were polygonal or atractoid, and were spread gyrately or radiately at 6 days. At 10 days, they were spread at the bottom of the bottle.The statistical analysis showed that the expression of the osteoblast phenotype differentiation of MSCs could be induced in the experimental groups. The proliferation of MSCs could be enhanced in a dosedependent manner in GroupsB-E. The expression of the osteoblast phenotype differentiation, which was tested by the activities of ALP and OC, was significantly higher in Groups F-I than in Groups A-E. Conclusion The combined use of rhBMP-2 and the osteogenic agents can enhance the MSC proliferation and induce an expressionand maintenance of the osteoblast phenotype differentiation of the rat MSCs.

          Release date:2016-09-01 09:22 Export PDF Favorites Scan
        • STUDY ON GENE TRANSFECTION IN BONE MARROW MESENCHYMAL STEM CELLS MEDIATED BY PLASMID OF BONE MORPHOGENETIC PROTEIN 2 LOADED LIPOPOLYSACCHARIDE-AMINE NANOPOLYMERSOMES

          ObjectiveTo evaluate the combination of lipopolysaccharide-amine nanopolymersomes (LNPs), as a gene vector, with target gene and the transfection in bone marrow mesenchymal stem cells (BMSCs) so as to provide a preliminary experiment basis for combination treatment of bone defect with gene therapy mediated by LNPs and stem cells. MethodsPlasmid of bone morphogenetic protein 2 (pBMP-2)-loaded LNPs (pLNPs) were prepared. The binding ability of pLNPs to pBMP-2 was evaluated by a gel retardation experiment with different ratios of nitrogen to phosphorus elements (N/P). The morphology of pLNPs (N/P=60) was observed under transmission electron microscope (TEM) and atomic force microscope (AFM). The size and Zeta potential were measured by dynamic light scattering (DLS). The resistance of pLNPs against DNase I degradation over time was explored. The viability of BMSCs, transfection efficiency, and expression of target protein were investigated after transfection by pLNPs in vitro. ResultsAt N/P≥1.5, pLNPs could completely retard pBMP-2; at N/P of 60, pLNPs was uniform vesicular shape under AFM; TEM observation demonstrated that pLNPs were spherical nano-vesicles with the diameter of (72.07±11.03) nm, DLS observation showed that the size of pLNPs was (123±6) nm and Zeta potential was 20 mV; pLNPs could completely resist DNase I degradation within 4 hours, and such protection capacity to pBMP-2 decreased slightly at 6 hours. The cell survival rate first increased and then decreased with the increase of N/P, and reached the maximum value at N/P of 45; the cytotoxicity was in grade I at N/P≤90, which meant no toxicity for in vivo experiment. While the transfection efficiency of pLNPs increased with the increase of N/P, and reached the maximum value at N/P of 60. So it is comprehensively determined that the best N/P was 60. At 4 days, transfected BMSCs expressed BMP-2 continuously at a relatively high level at N/P of 60. ConclusionLNPs can compress pBMP-2 effectively to form the nanovesicles complex, which protects the target gene against enzymolysis. LNPs has higher transfection efficiency and produces more amount of protein than polyethylenimine 25k and Lipofectamine 2000.

          Release date: Export PDF Favorites Scan
        • In vitro study of bone morphogenetic protein 2 gelatin/chitosan hydrogel sustained-release system composite hydroxyapatite/zirconium dioxide foam ceramics and induced pluripotent stem cells derived mesenchymal stem cells

          ObjectiveTo construct bone morphogenetic protein 2 (BMP-2) gelatin/chitosan hydrogel sustained-release system, co-implant with induced pluripotent stem cells (iPS) derived mesenchymal stem cells (MSCs) to hydroxyapatite (HA)/zirconium dioxide (ZrO2) bio porous ceramic foam, co-culture in vitro, and to explore the effect of sustained-release system on osteogenic differentiation of iPS-MSCs.MethodsBMP-2 gelatin/chitosan hydrogel microspheres were prepared by water-in-oil solution. Drug encapsulation efficiency, drug loading, and in vitro sustained release rate of the microspheres were tested. HA/ZrO2 bio porous ceramic foam composite iPS-MSCs and BMP-2 gelatin/chitosan hydrogel sustained release system co-culture system was established as experimental group, and cell scaffold complex without BMP-2 composite gelatin/chitosan hydrogel sustained release system as control group. After 3, 7, 10, and 14 days of co-culture in the two groups, ALP secretion of cells was detected; gene expression levels of core binding factor alpha 1 (Cbfa1), collagen type Ⅰ, and Osterix (OSX) were detected by RT-PCR; the expression of collagen type Ⅰ was observed by immunohistochemical staining at 14 days of culture; and cell creep and adhesion were observed by scanning electron microscopy.ResultsBMP-2 gelatin/chitosan hydrogel sustained-release system had better drug encapsulation efficiency and drug loading, and could prolong the activity time of BMP-2. The secretion of ALP and the relative expression of Cbfa1, collagen type Ⅰ, and OSX genes in the experimental group were significantly higher than those in the control group at different time points in the in vitro co-culture system (P<0.05). Immunohistochemical staining showed that the amount of fluorescence in the experimental group was significantly more than that in the control group, i.e. the expression level of collagen type Ⅰ was higher than that in the control group. The cells could be more evenly distributed on the materials, and the cell morphology was good. Scanning electron microscopy showed that the sustained-release system could adhere to cells well.ConclusioniPS-MSCs have the ability of osteogenic differentiation, which is significantly enhanced by BMP-2 gelatin/chitosan hydrogel sustained-release system. The combination of iPS-MSCs and sustained-release system can adhere to the materials well, and the cell activity is better.

          Release date:2019-01-25 09:40 Export PDF Favorites Scan
        • PREPARATION OF RECOMBINANT HUMAN BONE MORPHOGENETIC PROTEIN 2 DECORATED β TRICALCIUM PHOSPHATE/COLLAGEN AND PRELIMINARY STUDIES ON ITS PROPERTIES OF INDUCING TOOTH了 FORMATION

          Objective To explore a novel nanometer biomaterial which could induce the regeneration of tooth tissues intell igently, and to evaluate the feasibil ity of using this kind of biomaterial as the scaffold for tooth tissue engineering by investigating the role it plays in tooth tissue engineering. Methods The scaffold for tooth tissue engineering containing recombinant human bone morphogenetic protein 2 (rhBMP-2) was prepared by mixing nanoscale β tricalcium phosphate (β-TCP)/collagen particles. Forty-six 8-10 weeks old specific pathogen free Sprague Dawley (SD)rats, including 34 females and 12 males, weighing 250-300 g, were involved in this study. Tooth germs were removed under a stereomicroscope from the mandible of newborn SD rat, then digested and suspended. Scanning electronic microscope (SEM), adhesion rate of cells, and MTT assay were used to evaluate the effects of the scaffold on the tooth germ cells cultured in vitro. The tissue engineered tooth germ which was constructed by tooth germ cells and scaffold was transplanted under SD rat’s kidney capsule as the experimental group (n=12); the tooth germ cells (cell-control group, n=12) or scaffold without cells (material-control group, n=4) were transplanted separately as control groups Specimens were harvested to perform general and histological observations at 4 and 8 weeks after transplantation. Results β-TCP/collagen showed a loose and porous appearance with soft texture and excellent hydrophil icity. Tooth germ cells grew well and could attach to the scaffold tightly 3 days after coculture. The adhesion rates of tooth germ cells were 27.20% ± 2.37%, 44.52% ± 1.87%, and 73.81% ± 4.15% when cocultured with scaffold for 4, 8, and 12 hours, respectively. MTT assay showed that the cell prol iferation status of experimental group was similar to that of the control group, showing no significant difference (P gt; 0.05). Some white calcified specimens could be harvested at 4-8 weeks after transplantation. At 4 weeks after transplantation some typical structures of dental cusp and enamel-dentin l ike tissues could be seen in the experimental group. Enamel-dentin l ike tissues also formed in some specimens of cell-control group, but they arranged irregularly. At 8 weeks after transplantation the enamel-dentin l ike tissue of experimental group exhibited a mature appearance and organized structure in comparison with that at 4 weeks. And mature enamel or dentin l ike tissue also could be seen in cell-control group. In contrast, there was no enamel or dentin l ike tissue in material-control group at 4 or 8 weeks after transplantation. Conclusion rhBMP-2 decorated β-TCP/collagen scaffold has good biocompatibil ity and can be used as a novel nanometer biomaterial, so it is a good choice in scaffolds for tooth tissue engineering.

          Release date:2016-08-31 05:42 Export PDF Favorites Scan
        • Early effect of graphene oxide-carboxymethyl chitosan hydrogel loaded with interleukin 4 and bone morphogenetic protein 2 on bone immunity and repair

          ObjectiveTo investigate the effect of graphene oxide (GO)-carboxymethyl chitosan (CMC) hydrogel loaded with interleukin 4 (IL-4) and bone morphogenetic protein 2 (BMP-2) on macrophages M2 type differentiation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).MethodsGO solution was mixed with CMC, then the phosphate buffered saline (PBS), IL-4, BMP-2, or IL-4+BMP-2 were added to prepare different GO-CMC hydrogel scaffolds with or without different cytokines under crosslinking agents. The characteristics of pure GO-CMC hydrogel were characterized by gross observation, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR), and the CMC hydrogel was used as control. The sustained release of GO-CMC hydrogels with different cytokines was also tested. Macrophages were isolated and cultured from female Sprague Dawley rats aged 4-5 weeks, and then cultured with GO-CMC hydrogels with and without different cytokines, respectively. CD206 immunofluorescence staining was used to detect the differentiation of macrophages after 24 hours. The 3rd generation of rats BMSCs were cultured with GO-CMC hydrogels with and without different cytokines respectively for osteogenic induction. The early osteogenesis was observed by alkaline phosphatase (ALP) staining after 10 days, and the late osteogenesis was observed by alizarin red staining after 21 days.ResultsGenerally, GO-CMC hydrogel was brown and translucent. SEM showed that the pore diameter and wall thickness of GO-CMC hydrogel were similar to that of CMC hydrogel, but the inner wall roughness increased. FTIR test showed that CMC polymerized to form hydrogel. In vitro, the sustained release experiments showed that the properties of GO-CMC hydrogels loaded with different cytokines were similar. CD206 immunofluorescence detection showed that GO-CMC hydrogels could induce macrophages differentiation into M2-type. ALP and alizarin red staining showed that GO-CMC hydrogels could induce BMSCs osteogenic differentiation, in which GO-CMC hydrogel loaded with IL-4+BMP-2 showed the most significant effect (P<0.05).ConclusionThe GO-CMC hydrogel loaded with IL-4 and BMP-2 can induce macrophages differentiation into M2-type and enhance the ability of BMSCs with osteogenic differentiation in vitro, which provide a new strategy for bone defect repair and immune regulation.

          Release date:2020-08-19 03:53 Export PDF Favorites Scan
        • IN VITRO OSTEOGENESIS OF THE COMPOUND OF CHITOSAN AND RECOMBINANT HUMAN BONE MORPHOGENETIC PROTEIN 2

          Objective To explore the in vitro osteogenesis of the chitosan-gelatin scaffold compounded with recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods Recombinant human BMP-2 was compounded with chitosan-gelatin scaffolds by freezedrying. 2T3 mouse osteoblasts and C2C12 mouse myoblasts were cultured and seeded onto the complexes at thedensity of 2×104/ml respectively. The complexes were divided into two groups. Group A: 2T3 osteoblasts seeded, consisted of 14 rhBMP-2 modified complexes. Each time three scaffolds were taken on the 3rd, 7th, 14th, and 21st day of the culturing, then the expression of osteocalcin gene (as the marker of bone formation) in adherent cells was detected by semiquantitative RT-PCR with housekeeping gene β-tubulin as internalstandard. The other 2 rhBMP-2 modified complexes were stopped being cultured on 14th day after cell seeding, and the calcification of the complexes was detected by Alizarian Red S staining. Five scaffolds without rhBMP-2 modification as the control group A, they were stopped being cultured on 14th day after cell seeding. Of the 5 scaffolds, 3 were subjected tothe detection of osteocalcin gene expression and 2 were subjected to the detection of calcification. Group B: C2C12 myoblasts seeded, had equal composition andwas treated with the same as group A. Besides these 2 groups, another 2 rhBMP2 modified complexes with 2T3 osteoblasts seeding were cultured for 3 days and then scanned by electron microscope (SEM) as to detect the compatibility of the cell to the complex. ResultsSEM showed that cells attached closely to the complex and grew well. In group A, the expression level(1.28±0.17)of osteocalcin gene in cells on rhBMP-2 modified complexes was higher than that (0.56±0.09) of the control group A, being statistically -significantly different(P<0.05) control. C2C12 myoblasts which did not express osteocalcin normally could also express osteocalcin after being stimulated by rhBMP-2 for at least 7 days. Alizarian Red S staining showed that there was more calcification on rhBMP-2 modified complexes in both groups. There were more calcification in the group compounded with rhBMP-2, when the groups were seeded with the same cells. Conclusion The complexmade of rhBMP-2 and chitosan-gelatin scaffolds has b osteogenesis ability in vitro.

          Release date:2016-09-01 09:30 Export PDF Favorites Scan
        • Content of bone morphogenetic protein 2 in demineralized bone matrix prepared from different long bones and study of the osteogenic properties in vitro

          Objective To measure the concentration of bone morphogenetic protein 2 (BMP-2) in demineralized bone matrix (DBM) prepared from different long bones and to evaluate the osteoinductivity of different DBM on MC3T3-E1 cells. Methods Different bones from the same cadaver donor were used as the initial materials for making DBM, which were divided into ulna group (uDBM), humerus group (hDBM), tibia group (tDBM), and femur group (fDBM) according to the origins, and boiled DBM (cDBM) was taken as the control group. The proteins of DBM were extracted by guanidine hydrochloride, and the concentrations of BMP-2 were determined by ELISA assay. Then the DBM were co-cultured with MC3T3-E1 cells, the proliferation of MC3T3-E1 cells was observed by cell counting kit 8 (CCK-8) assay. The osteogenic differentiation ability of MC3T3-E1 cells was qualitatively observed by alizarin red, alkaline phosphatase (ALP), and Van Gieson staining, and the osteogenic differentiation ability of MC3T3-E1 cells was quantitatively analyzed by ALP content. Linear regression was used to analyze the effect of BMP-2 concentration in DBM on ALP synthesis. ResultsThere were significant differences in the concentration of BMP-2 among the DBM groups (P<0.05). The concentrations of BMP-2 in the lower limb long bone were higher than those in the upper limb long bone, and the concentration of BMP-2 in the fDBM group was about 35.5 times that in the uDBM group. CCK-8 assay showed that the cells in each group continued to proliferate within 5 days of co-culture, and the absorbance (A) values at different time points were in the order of cDBM group<uDBM group<hDBM group<tDBM group<fDBM group. After co-culture for 14 days, the expressions of ALP, calcified nodules, and collagen fibers in each group were consistent with the distribution of BMP-2 concentration in DBM. The order of ALP content from low to high was cDBM group<uDBM group<hDBM group<tDBM group<fDBM group, and the differences between the groups were significant (P<0.05). Linear regression analysis showed that \begin{document}$\hat y $\end{document}=0.361+0.017x, the effect of BMP-2 concentration in DBM on cellular ALP content was significant (t=3.552, P=0.005); for every 1 ng/g increase in BMP-2 concentration, ALP content would increase by 0.017 [95%CI (0.006, 0.027)] U/100 mL. Conclusion The concentration of natural BMP-2 in different long bones varies greatly, and the lower limb long bone is higher than the upper limb long bone. The harvested location of bone material was an important factor affecting the osteoinductivity of DBM.

          Release date:2023-08-09 01:37 Export PDF Favorites Scan
        • CONCENTRATION- OR TIME-DEPENDENT MANNER OF RECOMBINANT BONE MORPHOGENETIC PROTEIN 2 IN REGULATING EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR

          Objective To study biological rule of recombinant human bone morphogenetic protein 2 (rhBMP-2) in regulating the expression of vascular endothelial growth factor (VEGF) of adipose-derived stem cells (ADSCs) at different induced concentrations and time points at gene level and protein level. Methods ADSCs were separated from adult human adipose tissues and cultured until passage 3. After ADSCs were induced by rhBMP-2 in concentrations of 0, 50, 100, and 200 ng/ mL respectively for 24 hours, and by 100 ng/mL rhBMP-2 for 3, 6, 12, 18, 24, 36, and 48 hours (ADSCs were not induced at corresponding time point as controls) respectively, the VEGF mRNA and protein expressions were detected by RT-PCR and ELISA. Results The VEGF mRNA and protein expressions induced by rhBMP-2 were concentration-dependent; the expressions were highest in a concentration of 100 ng/mL. The VEGF mRNA expression in concentrations of 50, 100, and 200 ng/mL were significantly higher than that in a concentration of 0 ng/mL (P lt; 0.05); and the expression in concentration of 100 ng/ mL was significantly higher than that in concentrations of 50 and 200 ng/mL (P lt; 0.05). The VEGF protein expression in a concentration of 100 ng/mL was significantly higher than that in the other concentrations (P lt; 0.05). The VEGF mRNA and protein expressions induced by rhBMP-2 were time-dependent. The VEGF mRNA and protein expressions at 3 and 6 hours after induction were significantly lower than those of non-induced ADSCs (P lt; 0.05); the expressions were lower at 12 hours after induction, showing no significant difference when compared with those of non-induced ADSCs (P gt; 0.05); the expressions reached peak at 18 and 24 hours after induction, and were significantly higher than those of non-induced ADSCs (P lt; 0.05); the expressions decreased in induced and non-induced ADSCs at 36 and 48 hours, showing no significant difference between induced and non-induced ADSCs (P gt; 0.05). Conclusion rhBMP-2 adjusts VEGF expression of ADSCs in a concentration- and time-dependent manner. The optimum inductive concentration of rhBMP-2 is 100 ng/mL, induced to 18-24 hours is a key period when rhBMP-2 is used to promote tissue engineering bone vascularization.

          Release date:2016-08-31 04:08 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品