The inspiratory impedance threshold device (ITD) was put forward by Lurie in 1995, and was assigned as a class Ⅱa recommendation by the International Liaison Committee on Resuscitation (ILCOR) resuscitation guidelines in 2005. The ITD is used to augment negative intrathoracic pressure during recoil of the chest so as to enhance venous return and cardiac output, and to decrease intracranial pressure. In the recent years many researches on the ITD have been1 carried out, but all the researches can not take out a clear evidence to support or refute the use of the ITD. This paper introduces the structure and working principle of the ITD in detail, the research results and the debates about the use of the ITD for the past years.
Sudden cardiac arrest is one of the critical clinical syndromes in emergency situations. A cardiopulmonary resuscitation (CPR) is a necessary curing means for those patients with sudden cardiac arrest. In order to simulate effectively the hemodynamic effects of human under AEI-CPR, which is active compression-decompression CPR coupled with enhanced external counter-pulsation and inspiratory impedance threshold valve, and research physiological parameters of each part of lower limbs in more detail, a CPR simulation model established by Babbs was refined. The part of lower limbs was divided into iliac, thigh and calf, which had 15 physiological parameters. Then, these 15 physiological parameters based on genetic algorithm were optimized, and ideal simulation results were obtained finally.
Extracorporeal cardiopulmonary resuscitation (ECPR) is a salvage therapy for patients suffering cardiac arrest refractory to conventional resuscitation, and provides circulatory support in patients who fail to achieve a sustained return of spontaneous circulation. ECPR serves as a bridge therapy that maintains organ perfusion whilst the underlying etiology of the cardiac arrest is determined and treated. Increasing recognition of the survival benefit associated with ECPR has led to increased use of ECPR during the past decade. Commonly used indications for ECPR are: age<70 years, initial rhythm of ventricular fibrillation or ventricular tachycardia, witnessed arrest, bystander cardiopulmonary resuscitation within 5 min, failure to achieve sustained return of spontaneous circulation within 15 min of beginning cardiopulmonary resuscitation. This review provides an overview of ECPR utilization, recent outcomes, risk factors, and complications of ECPR. Identifying ECPR indications, rapid deployment of extracorporeal life support equipment, and high-quality ECPR management strategies are of paramount importance to improve survival.
The treatment of organ function damage secondary to return of spontaneous circulation in patients with cardiac arrest is an important part of advanced life support. The incidence of lung injury secondary to return of spontaneous circulation in patients with cardiac arrest is as high as 79%. Understanding the characteristics and related mechanisms of lung injury secondary to return of spontaneous circulation in patients with cardiac arrest, and early identification and treatment of lung injury secondary to return of spontaneous circulation are crucial to the clinical treatment of patients with cardiac arrest. Therefore, this article reviews the research progress on the characteristics, risk factors, mechanisms and treatment of lung injury secondary to return of spontaneous circulation in patients with cardiac arrest, in order to provide a reference for the research and clinical diagnosis and treatment of lung injury secondary to return of spontaneous circulation in patients with cardiac arrest.
American Heart Association updated the guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care in November 2019. This focused update incorporates the systematic review conducted by the International Liaison Committee on Resuscitation, an expert group consisting of hundreds of international resuscitation scientists, to identify the new evidence supporting the basic and advanced life support and first aid in emergency medical care. This focused update involves the life chain of CPR (dispatcher-assisted CPR and cardiac arrest centers), advanced cardiovascular life support (advanced airways, vasopressors, and extracorporeal CPR), and first aid for presyncope. This present review aims to interpret these updates by reviewing the literature and comparing the recommendations in this update with previous guidelines.
Elderly patients account for 80% of cardiac arrest patients. The incidence of poor neurological prognosis after return of spontaneous circulation of these patients is as high as 90%, much higher than that of young. This is related to the fact that the mechanism of hippocampal brain tissue injury after ischemia-reperfusion in elderly cardiac arrest patients is aggravated. Therefore, this study reviews the possible mechanisms of poor neurological prognosis after return of spontaneous circulation in elderly cardiac arrest animals, and the results indicate that the decrease of hippocampal perfusion and the number of neurons after resuscitation are the main causes of the increased hippocampal injury, among which oxidative stress, mitochondrial dysfunction and protein homeostasis disorder are the important factors of cell death. This review hopes to provide new ideas for the treatment of elderly patients with cardiac arrest and the improvement of neurological function prognosis through the comparative analysis of elderly and young animals.
This paper introduces the development and animal tests of a miniaturized electrical chest compression device. Based on pulse width modulation technology produced by micro control unit, the device can control the frequency and depth of the compression accurately, as well as perform real-time adjustment. Therefore, it can perform continuous and stable chest compression for long time, which may increase the successful rate of cardiopulmonary resuscitation (CPR). Besides, the device can also produce different types of compression waveforms, including trapezoidal and triangular waveforms. Then, the performance and efficacy of the device was assessed with a rat model of asphyxial cardiac arrest (CA).
Cardiac arrest (CA) represents a significant global public health challenge, severely endangering both individual lives and public safety. Over the past years, cardiopulmonary resuscitation (CPR) techniques have advanced significantly. In 2013, the American Heart Association proposed high-quality CPR (HQ-CPR) as a key component for enhancing survival and neurological prognosis in patients with CA. HQ-CPR extends beyond the fundamental skills of compression and ventilation by prioritizing key metrics such as compression rate and depth, full chest recoil, minimal interruptions, and early defibrillation, representing a pivotal shift of CPR toward evidence-based, standardized, and precision-oriented practices. Despite the widespread recognition and adoption of HQ-CPR in Western nations, China continues to encounter multiple barriers in CPR dissemination and quality assurance, including low public training rates, variable instructional quality, delayed emergency responses, and disparities in healthcare resource allocation. Accordingly, this article provides a comprehensive review of the essential components of HQ-CPR. By analyzing the key challenges in China’s current clinical implementation, this paper focuses on exploring the latest research on enhancing resuscitation efficacy in recent years, especially focusing on new strategies to minimizing myocardial ischemia and improving reperfusion efficiency, in order to provide information for clinical optimization and improving patient outcomes following CA.
The American Heart Association published the “2025 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care” in the journal Circulation in October 2025. The new guideline integrates the previously separate adult survival chains for different scenarios and populations into a unified “six-link survival chain” and provides updates and recommendations for multiple key components. Key updates emphasize the following contents: in basic life support, optimization of rescuers’ and patients’ positions, compression strategies for obese or prone patients, systematic management procedures for foreign-body airway obstruction, and details of automated external defibrillator application; in advanced life support, strengthening the core role of epinephrine and standardizing the use of vasoactive agents; updated resuscitation strategies for special situations (such as exposure to highly pathogenic respiratory pathogens and volatile hydrocarbon poisoning); in post-cardiac arrest care, further updates to respiratory and circulatory support, targeted temperature management, and neurological prognosis assessment; and recommendations at the system of care level, including public access to naloxone, video-based dispatch response, and the establishment of resuscitation centers. This article interprets the core recommendations of the guideline to offer references for clinical practice and education.
A 69-year-old male was presented with exercise intolerance and progressive exertional dyspnea for 3 months. His main clinical diagnosis were degenerative valvular disease, severe aortic stenosis, severe aortic regurgitation, severe mitral regurgitation, severe tricuspid regurgitation, ventricular electrical storm, chronic heart failure, and New York Heart Association (NYHA) class Ⅳ heart function. He was encountered with sudden ventricular electrical storm in the emergency room. Extracorporeal membrane oxygenation (ECMO) was impanted beside during cardiopulmonary resuscitation. Emergency transcatheter aortic valve replacement (TAVR) was successfully performed under the guidance of transesophageal echocardiography when hemodynamics permitted. ECMO was withdrawn on the 5th day and discharged on the 21st day. TAVR is safe and effective for the treatment of high-risk aortic stenosis, and ECMO support is the key for the success of cardiopulmonary resuscitation.