Objective To investigate the effect of ginkgolide B (GB) on cysteinyl aspartate specific proteinase-3 (Caspase-3)/chromosome 10 deletion phosphatase-tension protein homologue (PTEN)/protein kinase B (Akt) pathway and cell proliferation and apoptosis in hypoxia/reoxygenation cardiomyocytes. Methods H9C2 cells were cultured in vitro. A control group was cultured in serum-free DMEM high glucose medium at 37°C and 5% CO2 for 28 hours. The remaining groups were prepared with hypoxia/reoxygenation models. A GB low-dose group and a GB high-dose group were treated with GB pretreatment with final concentration of 50 μmol/L and 200 μmol/L respectively at 1 h before hypoxia/reoxygenation. A carvedilol group was treated with carvedilol of a final concentration of 10 μmol/L at 1 h before hypoxia/reoxygenation. The proliferation and apoptosis of H9C2 cells were detected, and the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), reactive oxygen species (ROS), PTEN, Akt, phosphorylated Akt (p-Akt) and Caspase-3 in H9C2 cells were also detected. Results Compared with the control group, the proliferation rate of H9C2 cell, and the levels of PTEN, Akt and p-Akt in other groups decreased, and the apoptosis rate, and the levels of LDH, MDA, ROS and Caspase-3 increased (P<0.05). Compared with the hypoxia/reoxygenation group, the proliferation rate of H9C2 cell, and the levels of PTEN, Akt and p-Akt in all GB dose groups and the carvedilol group increased; the apoptosis rate, and the levels of LDH, MDA, ROS and Caspase-3 decreased, and the effect of GB was in a dose dependent manner; however, the effect of GB was not as strong as carvedilol (P<0.05). Conclusion GB can inhibit H9C2 cell apoptosis and promote H9C2 cell proliferation by activating Caspase-3/PTEN/Akt pathway.
ObjectiveThis study is aimed to determine the expression of ubiquitin-specific peptidase 39 (USP39) protein in the colorectal cancer (CRC) tissues, and the effect of silencing USP39 gene on the cell growth and cell cycle distribution of CRC cells.Methods① The expressions of USP39 protein in CRC tissues and its paracancerous tissues were determined by immunohistochemical staining method. ② By lentiviral infection, Lv-shUSP39 (KD-1 and KD-2 group) and Lv-shCon (shCon group) were transferred into SW1116 and HCT116 cells, and cells of blank control group did not received any treatment (Con group). To determine the role of USP39 gene in cell growth, MTT assay was performed to draw growth curve, and cell cycle distribution of CRC cells in the 4 groups were determined by flow cytometer.Results① The expression of USP39 protein was higher in CRC tissues compared to adjacent tissues (P=0.007). ② For SW1116 and HCT116 cells, the cell proliferation ability of KD-1 and KD-2 groups were remarkably decreased than those in corresponding shCon and Con groups on 3, 4, and 5-day (P<0.05). ③ Flow cytometry assay showed that, the percentage of G0/G1 phase cells were decreased obviously (P<0.05), while increased significantly in percentage of G2/M phase and number of sub-G1 phase cells in KD-1 group compared with that in the Con group and shCon group of SW1116 and HCT116 cells (P<0.05).ConclusionsThe expression of USP39 protein is highly expressed in CRC tissues. Knockdowning of USP39 gene can inhibit cell proliferation and promote cell apoptosis.
Objective
To observe the structural changes of urinary center and the expression of Bcl-2 after conus medullaris injury in rats brain so as to explore the possible influence factors of degeneration in brain.
Methods
Thirty-six adult Sprague-Dawley rats were randomly divided into experimental group (n=30) and control group (n=6). In the experimental group, the conus medullaris injury model was established by cutting off the spinal nerve below L4, and no treatment was done in the control group. The modeling operations in the experimental group were successful, and 2 rats died at 3 months and 5 months after modeling operation respectively, which may be caused by renal failure or urinary tract infection. In the experimental group, 6, 6, 6, 5, and 5 rats were killed at 1 day, 1 week, and 1, 3, 6 months after operation respectively, and 1 rat was killed at each time point in the control group. The dorsolateral tissue of the pontine tegmentum was harvested to perform HE staining and Bcl-2 immunohistochemical SP staining.
Results
HE staining showed that there was no obvious difference between the experimental group and the control group at 1 day after operation, the neurons were densely packed, arranged neatly, and the nucleoli were clear; at 1 week, the space between the neurons in the experimental group were slightly widened; at 1 month, nucleus retraction in some neurons happened in the experimental group; at 3 and 6 months, the nuclei in the experimental group were more and more condensed, and even some cells disappeared. Bcl-2 immunohistochemical SP staining showed that the expression of Bcl-2 in the control group was weakly positive. The positive expression of Bcl-2 was found at 1 day after operation in the experimental group; the positive expression of Bcl-2 at 7 days after operation was significantly higher than that in the control group, and reached the peak; the positive expression of Bcl-2 decreased gradually at 1, 3, and 6 months after modeling operation, but it was still higher than that of the control group.
Conclusion
The urinary center appears structure degeneration and necrocytosis after conus medullaris injury in rats brain. The elevated expression of Bcl-2 may be associated with brain tissue repair and function remodeling.
This paper aims to study the effects of traditional Chinese medicine Euphorbia esula on multidrug resistant human gastric cancer cells in the cell proliferation, migration, invasion and apoptosis, and to study the apoptosis-inducing pathway. Different dilutions of Euphorbia esula extract were used to process human multidrug resistant gastric cancer SGC7901/ADR cells. Cell proliferation inhibition phenomenon was determined by MTT experiment. Nuclear morphological changes of apoptotic cells and apoptotic indexes were observed and determined by Hochest33528 staining followed with fluorescence microscope observing. Flow cytometry was used to detect cell apoptosis rate. Cell migration and invasion ability were observed and determined by Transwell method. Spectrophotometry was used to detect caspase-3 and caspase-9 enzyme activity. Western blotting was used to detect subcellular distribution of cytochrome c. The results showed that Euphorbia esula extract had obvious inhibition effect on proliferation of gastric cancer multidrug resistant SGC7901/ADR cells, which was time- and concentration-dependent. After processing multidrug resistant gastric cancer SGC7901/ADR cells with Euphorbia esula extract, the apoptotic index and apoptosis rate were significantly increased than those in the control group, which showed a time- and dose-dependent mode; but if a caspase inhibitor was added, apoptosis index was not obviously increased. Transwell method showed that migration and invasion ability of the Euphorbia esula extract-processed SGC7901/ADR cells dropped significantly. Spectrophotometry showed that in Euphorbia esula extract-processed SGC7901/ADR cells, caspase-3 and caspase-9 expression were increased, which had significant differences with the control group. Western blotting test showed that the distribution of cytochrome c decreased in mitochondria, while increased in the cytoplasm (i.e., cytochrome c escaped from mitochondria to the cytoplasm). In conclusion, Euphorbia esula extract could inhibit the proliferation, migration and invasion, and induce apoptosis in human gastric cancer multidrug resistant SGC7901/ADR cells; and cytochrome c, caspase-9 and caspase-3 might be involved in cell apoptosis induced by Euphorbia esula extract, suggesting endogenous or mitochondrial apoptotic pathway.
Objective To determine the anti-apoptosis effects of heme oxygenase-1 (HO-1) on lung injury after cardiopulmonary bypass (CPB), and to investigate its probable mechanisms. Methods A total of 144 male Wistar rats with wight of 250-350 g were divided into 3 groups: group A (control group), group B (cobalt protoporphyrin, CoPP), and group C [CoPP and zinc protoporphyrin (ZnPP)] randomly. A modified rat model of CPB-induced lung injury was established. And then the lung tissues were taken at different times for the relevant indicators test: before CPB (T0), immediately after CPB (T1), 2 h after CPB (T2), 6 h after CPB (T3), 12 h after CPB (T4), and 24 h after CPB (T5). The expression of HO-1 and Bcl-2 protein in each group was tested by immunohistochemistry, and cell apoptosis by TUNEL. Results The HO-1 protein expression in group B was significantly higher than that in groups A and C at any given time point, so was the HO-1 activity (P<0.05). There was no significant difference in Bcl-2 expression of lung tissue before CPB among each group (P>0.05). The Bcl-2 protein reduced gradually after CPB. The expressions of Bcl-2 protein in group B at all time points after bypass were significantly higher than that in groups A and C (P<0.05). The apoptosis index (AI) showed no significant difference before CPB in each group (P>0.05), and increased gradually after CPB. AI in group B at any time point after bypass was lower than that in groups A and C (P<0.05). The HE staining results showed that the damage of lung tissue in group B obviously reduced compared with groups A and C. Conclusion CoPP can induce a large amount of HO-1 expression in the lung tissue, and it is still highly expressed after CPB. So it plays an important role in anti-apoptosis through the up-regulation of Bcl-2 protein expression.
Objective To explore whether microRNA-203 (miR-203) targets and regulates the Toll-like receptor 4 (TLR4)/nuclear transcription factor kappa B (NF-κB)/nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) to protect alveolar epithelial cells from lipopolysaccharide (LPS)-induced apoptosis and inflammation injury. Methods The alveolar epithelial A549 cells were used as the research objects and divided into: Control group (normal culture), LPS group (LPS treatment), LPS+miR-NC mimics group (LPS treatment after transfection of miR-NC mimics), LPS+ miR-203 mimics group (LPS treatment after transfection of miR-203 mimics), LPS+miR-203 mimics+pcDNA group (LPS treatment after transfection of miR-203 mimics and pcDNA), LPS+miR-203 mimics+pcDNA-TLR4 group (LPS treatment after transfection of miR-203 mimics and pcDNA-TLR4). Dual luciferase reporter gene was used to detect the targeting relationship between miR-203 and TLR4; Real-time quantitative reverse transcription-polymerase chain reaction was used to detect the relative expression levels of miR-203 and TLR4 mRNA; enzyme-linked immunosorbent assay was used to measure the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6; flow cytometry was used to detect the apoptosis rate of A549 cells; Western blot was used to detect the expression of B-cell lymphoma/leukemia-2 gene (Bcl-2) and Bcl-2 associated X protein (Bax), TLR4, NF-κB and NLRP3 proteins in A549 cells. Results There was a targeted regulation relationship between miR-203 and TLR4. Compared with the Control group, the expression of miR-203, TLR4 mRNA and protein, Bax, NF-κB, and NLRP3 proteins in A549 cells in the LPS group increased, the levels of TNF-α, IL-1β and IL-6 in the cell supernatant increased, the apoptosis rate increased, the level of Bcl-2 protein in cells decreased (P<0.05). Compared with the LPS+miR-NC mimics group, the expression of TLR4 mRNA and protein, Bax, NF-κB, and NLRP3 proteins in A549 cells in the LPS+miR-203 mimics group decreased, the levels of TNF-α, IL-1β and IL-6 in the cell supernatant decreased, the apoptosis rate decreased, the expression level of miR-203 and the level of Bcl-2 protein in cells increased (P<0.05). Compared with the LPS+miR-203 mimics+pcDNA group, the expression of miR-203, TLR4 mRNA and protein, Bax, NF-κB, and NLRP3 proteins in A549 cells in the LPS+miR-203 mimics+pcDNA-TLR4 group increased, the levels of TNF-α, IL-1β and IL-6 in the cell supernatant increased, the apoptosis rate increased, the expression level of miR-203 and the level of Bcl-2 protein in cells decreased (P<0.05). Conclusion MiR-203 can target TLR4/NF-κB/NLRP3 to protect alveolar epithelial cells from apoptosis and inflammation induced by LPS.
ObjectiveTo investigate the effect of FTY720-P on the differentiation and maturation of MC3T3-E1 cells.MethodsThe MC3T3-E1 cells were divided into the experimental group and the control group. In the experimental group, the cells were induced by the medium containing 400 ng/mL FTY720-P (chloroform as solubilizer) in vitro. In the control group, the cells were cultured with the medium only containing chloroform. The cell morphology of 2 groups were observed by inverted phase contrast microscope; the expression of osteoblast related protein (collagen type Ⅰ and collagen type Ⅲ) was detected by immunofluorescence staining; the alkaline phosphatase (ALP) staining and alizarin red staining were used to observe the formation of osteoblasts and the formation of mineralized nodules in 2 groups; and the TUNEL fluorescence assay was used to detect the cell apoptosis.ResultsAfter 48 hours of culture, the cells of 2 groups had grown into slender fusiform at the bottom of the bottle, and there was no significant difference in cell morphology between 2 groups. Immunofluorescence staining showed that the expression of collagen type Ⅰ was positive in the experimental group and weakly positive in the control group; the integrated absorbance (IA) value of the experimental group was 187 600±7 944, which was significantly higher than that of the control group (14 230±1 070) (t=43.680, P=0.001). The expression of collagen type Ⅲ was weakly positive in the experimental group and the control group, and there was no significant difference in IA value between 2 groups (t=1.976, P=0.119). ALP staining and alizarin red staining were positive in the experimental group and negative in the control group. TUNEL staining was positive in the experimental group and negative in the control group; the rate of TUNEL staining positive cells in the experimental group was 35.82%±2.99%, which was significantly higher than that in the control group (2.28%±0.51%) (t=23.420, P=0.002).ConclusionFTY720-P can promote the osteogenic differentiation of MC3T3-E1 cells with speeding up maturation and mineralization of extracellular matrix and affect the apoptosis of the cells.
Abstract: Objective To investigate the effects of calcium preconditioning (CP) on immature myocardial cell apoptosis and apoptosisregulated proteins. Methods The experiment was carried out from June 2000 to December 2001 in the Renmin Hospital of Wuhan University. Twelve rabbits with the age of 1421 d and the weight of 230300 g were divided into 2 groups with 6 in each group by random digital table. For rabbits in the ischemia/reperfusion group (I/R group), after Langendorff models were routinely set up, KrebsHenseleit (KH) solution was perfused for 20 minutes and reperfused for 120 minutes after 45 minutes of ischemia. For rabbits in the CP group, after Langendorff models were established, KH solution was perfused for20 minutes, and 45 seconds’ noncalcium KH solution perfusion and 5 minutes’ KH solution perfusion were repeated 3 times before 45 minutes of ischemia and 120 minutes of reperfusion of KH solution. In situ apoptosis identification and semiquantitative analysis were used to detect the myocardial cell apoptosis; agarose gel electrophoresis was used to detect the nucleosomal ladder of DNA fragments; and the expression of bcl-2, bax and fas were detected with Western blot method. Results The apoptosis rate for the CP group was lower than that of the I/R group (4.53%±1.22% vs. 12.30%±2.12%,t=7.780, P=0.000). Nucleosomal ladder of DNA fragments of the CP group was lower than that of the I/R group (OD value: 56 460±1 640 vs. 135 212±3 370,t=51.460,P=0.000). The expression of bcl-2 in the I/R group was lower than that of the CP group (OD value: 13 217±1 770 vs. 31 790±1 018,t=22.280, P=0.000). The expression of bax (OD value: 30 176±1 025 vs. 7 954±730, t=43.260, P=0.000) and fas (OD value: 29 197±1 233 vs. 8 140±867, t=34.220, P=0.000) in the I/R group was higher than that of the CP group. Conclusion CP can affect the expression of myocardial bcl-2, bax, and fas, and decrease immature myocardial cell apoptosis.
ObjectiveTo investigate the influence of endoplasmic reticulum stress (ERS) on smoking-induced nucleus pulposus cells apoptosis and inflammatory response.MethodsBetween October 2016 and October 2018, 25 patients with cervical disc herniation receiving discectomy were collected and divided into smoking group (14 cases) and non-smoking group (11 cases). The baseline data of age, gender, herniated segment, and Pfirrmann grading showed no significant difference between the two groups (P>0.05). The obtained nucelus pulposus tissues were harvested to observe the cell apoptosis via detecting the apoptosis-related proteins (Caspase-3 and PRAP) by TUNEL staining and Western blot test. The nucleus pulposus cells were isolated and cultured with enzyme digestion, of which the third generation cells were used in follow-up experiments. Then, the expressions of inflammatory factors [interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α)] were detected by ELISA; the nuclear translocation of P65 was monitored by cell immunofluorescence staining. Furthermore, ERS-related proteins (GRP78 and CHOP) were detected by Western blot; and endoplasmic reticulum ultrastructure was observed under transmission electron microscope. To verify the regulatory effect of ERS, cells were pretreated by ERS specific inhibitor (4-PBA), then cell apoptosis and inflammatory response were tested.ResultsThe nucleus pulposus tissue observation showed that the cell apoptotic rate and the expressions of apoptosis-related proteins (Caspase-3 and PARP) were obviously higher in smoking group than in non-smoking group (P<0.05). The nucleus pulposus cells observation indicated that the expressions of the inflammatory factors (IL-1β and TNF-α) and the ERS-related proteins (GRP78 and CHOP) were also higher in smoking group than in non-smoking group (P<0.05). The results of cell immunofluorescence staining further confirmed that smoking stimulated nuclear translocation of P65 in nucleus pulposus cells. The ERS injury was much more serious in smoking group than in non-smoking group. Furthermore, after 4-PBA inhibiting ERS, the expressions of GRP78, CHOP, IL-1β, TNF-α, and P65 were significantly decreased (P<0.05), and flow cytometry results showed that cell apoptotic rate in smoking group was decreased, showing significant difference compared with the non-smoking group (P<0.05).ConclusionSomking can stimulate cell apoptosis and inflammatory response in nucleus pulposus cells via ESR pathway. Suppressing ESR may be a novel target to suspend smoking-induced intervertebral disc degeneration.
Objective To explore the molecular mechanism of miR-515-5p in inhibiting chondrocyte apoptosis and alleviating inflammatory response in osteoarthritis (OA). Methods Human cartilage cell line C28/I2 was cultured in vitro and treated with 10 ng/mL interleukin 1β (IL-1β) for 24 hours to construct an in vitro OA model. C28/I2 cells were transfected with miR mimics, mimics negative control (NC), over expression (oe)-NC, and oe-Toll-like receptor 4 (TLR4), respectively, and then treated with 10 ng/mL IL-1β for 24 hours to establish OA model. Cell proliferation capacity was detected by cell counting kit 8 and 5-Ethynyl-2’-deoxyuridine, cell apoptosis and cell cycle were detected by flow cytometry, and B-cell lymphoma 2 protion (Bcl-2), Bcl-2-associated X protein (Bax), cleaved-Caspase-3, TLR4, myeloid differentiation primary response gene 88 (MyD88), p65 and phosphorylated p65 (p-p65) protein expression levels were detected by Western blot. Real-time fluorescence quantitative PCR was used to detect mRNA expression levels of miR-515-5p and TLR4, and ELISA was used to detect pro-inflammatory factor prostaglandin E2 (PGE2), tumor necrosis factor α (TNF -α), and IL-6 levels in cell supernatant. The potential binding sites between miR-515-5p and TLR4 were predicted by BiBiServ2 database, and the targeting relationship between miR-515-5p and TLR4 was verified by dual luciferase reporting assay. Results After the treatment of C28/I2 cells with IL-1β, the expressions of miR-515-5p and Bcl-2 protein and the proliferation ability of C28/I2 cells significantly reduced. The expression levels of Bax and cleaved-Caspase-3 protein, the levels of pro-inflammatory factors (PGE2, TNF-α, IL-6) in the supernatant of C28/I2 cells, and the apoptosis of C28/I2 cells significantly increased. In addition, the proportion of the cells at S phase and G2 phase decreased significantly, and the proportion of cells at G1 phase increased significantly, suggesting that the cell cycle was blocked after IL-1β treatment. After transfection with miR mimics, the expression level of miR-515-5p in the cells significantly up-regulated, partially reversing the apoptosis of OA chondrocytes induced by IL-1β, and alleviating the cycle arrest and inflammatory response of OA chondrocytes. After treating C28/I2 cells with IL-1β, the mRNA and protein levels of TLR4 significantly increased. Overexpression of miR-515-5p targeted inhibition of TLR4 expression and blocked activation of MyD88/nuclear factor κB (NF-κB) pathway. Overexpression of TLR4 could partially reverse the effect of miR mimics on IL-1β-induced apoptosis and inflammation of OA chondrocytes. ConclusionmiR-515-5p negatively regulates the expression of TLR4, inhibits the activation of MyD88/NF-κB pathway and apoptosis of OA chondrocytes, and effectively alleviates the inflammatory response of the cells.