Objective To study operative methods of treating upper cervical spine instability without injury. Methods Twentythree cases were treated by internal fixation with autologous bone grafts. Atlantoaxial arthrodesis were performed in 10 cases with Apofix interlaminar clamp(5 cases), Atlas cable system(3 cases) and Brookes(2 cases). Occipitocervical fusion were performed in the other 13 cases by using of CD-cervical(3 cases), Cervifix(8 cases) and Ustick fixation(2cases). Results All the 23 cases were followed up for 2.5 years in average (ranged from 6 months to 5 years). Solid arthrodesis was obtained in all 23 cases . Six months after operation, of the 20 cases with preoperation nervous lesion, improvement was achieved in 16 cases. According to JOA standard and Hirabashiformula,the rate of improvement was 27.1%.Conclusion Posterior fusion is recommended for upper cervical unstability.
Objective To evaluate the clinical effect of Halo-vest in treatment of unstable upper cervical spine. Methods From March 1997 to October 2002, 16 cases of unstable upper cervical spineswere treated and immobilized by Halovest, aged from 14 to 53 years. There were 3 cases of isolated Jefferson fractures, 4 cases of isolated Hangman fractures and 1 case of Anderson type Ⅱ fracture. The 8 cases were immobilized for 3-4 months by Halovest. There were 3 cases of old odontoid fractures with dislocations treated by occipitocervical plate fixation and fusion, 1 case of C1 malignant tumor by posterior resection and internal fixation, 2 cases of C2 malignant tumor by anterior resection, fusion, and internal fixation; these cases were immobilized by Halo-vest during surgery. There were 1 case of C2,3 tuberculosis were treated by anterior debridement and fusion, and 1 case of gooseneck deformity by anterior decompression, fusion and screw fixation after resection of C2-7 , the 2 cases were immobilized for 3 months by Halo-vest.Of 16 cases, there were 8 cases accompanied with spinal cord syndrome. Results Fifteen cases were followed up 6 months to 5 years. Anterior arch ununion and posteriorarch osseous healing occurred in 1 case of Jefferson fracture. Other fractures and embedded bones became osseous fusion. One case of C2 malignant tumorrecurred 8 months after operation. Spinal cord syndrome of all patients disappeared. Conclusion Halo-vest immobilization is an effective method for conservative treatment and stable reconstruction of unstable upper cervical spine.
This article reviews the progress of biomechanical studies on anterior cervical fusion and nonfusion surgery in recent years. The similarities and differences between animal and human cervical spines as well as the major three biomechanical test methods are introduced. Major progresses of biomechanical evaluation in anterior cervical fusion and nonfusion devices, hybrid surgery, coupled motion and biomechanical parameters, such as the instant center of rotation, are classified and summarized. Future development of loading method, multilevel hybrid surgery and coupling character are also discussed.
Zero profile cervical interbody cage is an improvement of traditional fusion products and necessary supplement of emerging artificial intervertebral disc products. When applied in Anterior Cervical Decompression Fusion (ACDF), zero profile cervical interbody cage can preserve the advantages of traditional fusion and reduce the incidence of postoperative complications. Moreover, zero profile cervical interbody cage can be applied under the tabu symptoms of Artificial Cervical Disc Replacement (ACDR). This article summarizes zero profile interbody cage products that are commonly recognized and widely used in clinical practice in recent years, and reviews the progress of structure design and material research of zero profile cervical interbody cage products. Based on the latest clinical demands and research progress, this paper also discusses the future development directions of zero profile interbody cage.
OBJECTIVE: To investigate surgical reconstruction of stability of lower cervical spine in children suffering trauma, tuberculosis and tumor. METHODS: From January 1998 to September 2001, 8 cases of unstable lower cervical spine were treated by operations, of anterior decompression, massive iliac bone grafting, posterior fixation with spinous process tension band wiring, and fusion with heterogeneous iliac bone grafting. RESULTS: With an average following up of 1 year and 9 months (6 months to 4 years and 3 months), 3 cases recovered excellently, 4 cases recovered well and 1 case died of pulmonary infection. CONCLUSION: The above results indicate that anterior decompression, massive iliac bone grafting, posterior fixation with spinous process tension band wiring and fusion with heterogeneous iliac bone grafting can be used as one of the methods to reconstruct the stability of lower cervical spine in children.
This study aims to investigate the range of motion (ROM) and the stress variation in the intervertebral disc and the vertebral body on adjacent segments and the influence of force transmission mode after the dynamic cervical implant (DCI) surgery. Two types of surgery, DCI implantation and interbody fusion were used to establish the finite element model of the cervical C5, 6 segment degeneration treatment. The ROM and the adjacent discs and vertebral body stresses of two procedures under flexion, extension, lateral bending and axial rotation working conditions were analyzed. The results showed that ROM of the surgical segment in DCI model was well preserved and could restore to the normal ROM distributions (reduction of the amplitude was less than 25%), and the kinetic characteristics of adjacent segments was less affected. In fusion surgery model, however, ROM of the surgical segment was reduced by 86%-91%, while ROM, disc stress and vertebral stress of adjacent segments were increased significantly, and stress of the C5 vertebral body was increased up to 171.21%. Therefore DCI surgery has relatively small influence on cervical ROM and stress. The study provides a theoretical basis for DCI and fusion surgery in clinic.
ObjectiveTo investigate the effectiveness of cervical pedicle screw implantation technique under regional method.MethodsThe clinical data of 85 patients who met the selection criteria between April 2010 and May 2018 were retrospectively analyzed. There were 57 males and 28 females, aged 35-68 years, with an average of 57.6 years. Among them, there were 10 cases of ossification of posterior longitudinal ligament, 68 cases of cervical spondylosis with multilevel stenosis, 3 cases of cervical tumor, 1 case of congenital malformation, and 3 cases of cervical trauma; the lower cervical spine lesions involved C3-C7. Preoperative Frankel spinal cord injury grading: 2 cases of grade C, 51 cases of grade D, and 32 cases of grade E. Cervical pedicle screw implantation technique under regional method was performed with a total of 618 pedicle screws. Postoperative changes in neurological symptoms were observed; cervical mouth opening anteroposterior and lateral X-ray films and cervical CT examinations were performed to evaluate the pedicle screws position.ResultsThe operation time was 2.5-4.0 hours, with an average of 3.0 hours. The intraoperative blood loss was 180-550 mL, with an average of 345 mL. No intraoperative vascular or nerve injury occurred. The patients with neurological symptoms were relieved to varying degrees. There were 2 cases of superficial incision infection after operation, the wound healed after enhanced dressing change. The postoperative hospital stay was 5-14 days, with an average of 8.4 days. At discharge, Frankel neurological grading was grade D in 26 patients and grade E in 59 patients. All the patients were followed up 6-24 months, with an average of 13 months. At last follow-up, cervical X-ray films showed the good pedicle screw fixation without loosening. Cervical CT evaluated the position of pedicle screws: 523 pedicle screws (84.7%) in grade Ⅰ, 80 (12.9%) in grade Ⅱ, and 15 (2.4%) in grade Ⅲ; the accuracy rate of the screw position was 97.6%.ConclusionCervical pedicle screw implantation technique under regional method can significantly improve the success rate of screw implantation. It is easy to operate, does not destroy the bone cortex, and has stable fixation.
Objective To establ ish sophisticated three-dimensional finite element model of the lower cervical spine and reconstruct lower cervical model by different fixation systems after three-column injury, and to research the stress distribution of the internal fixation reconstructed by different techniques. Methods The CT scan deta were obtained from a 27-year-old normal male volunteer. Mimics 10.01, Geomagic Studio10.0, HyperMesh10.0, and Abaqus 6.9.1 softwares were usedto obtain the intact model (C3-7), the model after three-column injury, and the models of reconstructing the lower cervical spine after three-column injury through different fixation systems, namely lateral mass screw fixation (LSF) and transarticular screw fixation (TSF). The skull load of 75 N and torsion preload of 1.0 N?m were simulated on the surface of C3. Under conditions of flexion, extension, lateral bending, and rotation, the Von Mises stress distribution regularity of internal fixation system was evaluated. Results The intact model of C3-7 was successfully establ ished, which consisted of 177 944 elements and 35 668 nodes. The results of the biomechanic study agreed well with the available cadaveric experimental data, suggesting that they were accord with normal human body parameters and could be used in the experimental research. The finite element models of the lower cervical spine reconstruction after three-column injury were establ ished. The stress concentrated on the connection between rod and screw in LSF and on the middle part of screw in TSF. The peak values of Von Mises stress in TSF were higher than those in LSF under all conditions. Conclusion For the reconstruction of lower cervical spine, TSF has higher risk of screw breakage than LSF.
In order to check the neck response and injury during motor vehicle accidents, we developed a detailed finite element model for human cervical spine C4-C6. This model consisted of cortical bone, cancellous bone, annulus, nucleus, ligaments and articular facet, and it also set up contact in the contacting parts for simulating the movement perfectly under frontal impact. This model could be used for stress and strain distribution after the frontal impact load was applied on this model. During the process of frontal impact, the most displacement simulated data were in the interval range of experimental data. The experimental results showed that this model for the human cervical spine C4-C6 simulated the movement under the frontal impact with fidelity, and reflected the impact dynamics response on the whole.
ObjectiveTo measure anatomical parameters related to cervical uncovertebral joint and provide data support for the design of uncovertebral joint fusion cage.MethodsAccording to the inclusion and exclusion criteria, raw DICOM data of cervical CT scan in 60 patients (30 males and 30 females, aged 39-60 years) were obtained, then the three-dimensional cervical spine model was reconstructed for anatomical measurement by using the Mimics19.0 software. The height of the uncinate process, the length of the uncinate process, the width of the uncinate process, and the length of the uncovertebral joint in the intervertebral foramen region were measured bilaterally from C3 to C7. The anterior and posterior distances between the uncinate processes were measured from C3 to C7. The height of the uncovertebral joint space, the central height of the intervertebral disc space, and the depth of the intervertebral disc space were also measured from C2, 3 to C6, 7. The mean, standard deviation, maximum, and minimum were calculated by using the SPSS22.0 statistical software for the design of uncovertebral joint fusion cage.ResultsThe height of the uncinate process, the length of the uncinate process, the width of the uncinate process, and the length of the uncovertebral joint in the intervertebral foramen region of C3-C7 and the height of the uncovertebral joint space of C2, 3-C6, 7 showed no significant difference between two sides (P>0.05). The height of the uncovertebral joint space also had no significant difference between females and males (P>0.05). The anterior distances between the uncinate processes of C3-C7 were significantly larger than the posterior distances between the uncinate processes (P<0.05), the uncovertebral joint presented a posterior cohesive shape. The central height of the intervertebral disc space in male group was slightly higher than that in female group, and the differences were significant (P<0.05) at C2, 3 and C5, 6; the depth of the intervertebral disc space in male group was significantly higher than that in female group (P<0.05). The central height of the intervertebral disc space was (4.94±0.49) mm (range, 3.81-5.90 mm), the depth of the intervertebral disc space was (15.78±1.23) mm (range, 12.94-18.85 mm), the anterior and posterior distances between the uncinate processes were (17.19±2.39) mm (range, 13.39-24.63 mm) and (10.84±2.12) mm (range, 7.19-16.64 mm), respectively. According to the results of the anatomical research, the height of the uncovertebral joint fusion cage was designed as 5, 6, 7, and 8 mm; the depth of the uncovertebral joint fusion cage was designed as 12, 13, 14, 15, and 16 mm; the width of the uncovertebral joint fusion cage was designed as 14-18 mm; and the two wings are designed as arc-shape with 2 and 3 mm in width.ConclusionThere are certain differences in the anatomical parameters of the uncovertebral joint between different segments. The uncovertebral joint fusion cage that designed based on the results of anatomical research is suitable for most patients.