1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "convolutional neural network" 37 results
        • Pulmonary nodule detection method based on convolutional neural network

          A method was proposed to detect pulmonary nodules in low-dose computed tomography (CT) images by two-dimensional convolutional neural network under the condition of fine image preprocessing. Firstly, CT image preprocessing was carried out by image clipping, normalization and other algorithms. Then the positive samples were expanded to balance the number of positive and negative samples in convolutional neural network. Finally, the model with the best performance was obtained by training two-dimensional convolutional neural network and constantly optimizing network parameters. The model was evaluated in Lung Nodule Analysis 2016(LUNA16) dataset by means of five-fold cross validation, and each group's average model experiment results were obtained with the final accuracy of 92.3%, sensitivity of 92.1% and specificity of 92.6%.Compared with other existing automatic detection and classification methods for pulmonary nodules, all indexes were improved. Subsequently, the model perturbation experiment was carried out on this basis. The experimental results showed that the model is stable and has certain anti-interference ability, which could effectively identify pulmonary nodules and provide auxiliary diagnostic advice for early screening of lung cancer.

          Release date:2020-02-18 09:21 Export PDF Favorites Scan
        • Extraction of calcification in ultrasonic images based on convolution neural network

          Ultrasound is the best way to diagnose thyroid nodules. To discriminate benign and malignant nodules, calcification is an important characteristic. However, calcification in ultrasonic images cannot be extracted accurately because of capsule wall and other internal tissue. In this paper, deep learning was first proposed to extract calcification, and two improved methods were proposed on the basis of Alexnet convolutional neural network. First, adding the corresponding anti-pooling (unpooling) and deconvolution layers (deconv2D) made the network to be trained for the required features and finally extract the calcification feature. Second, modifying the number of convolution templates and full connection layer nodes made feature extraction more refined. The final network was the combination of two improved methods above. To verify the method presented in this article, we got 8 416 images with calcification, and 10 844 without calcification. The result showed that the accuracy of the calcification extraction was 86% by using the improved Alexnet convolutional neural network. Compared with traditional methods, it has been improved greatly, which provides effective means for the identification of benign and malignant thyroid nodules.

          Release date:2018-10-19 03:21 Export PDF Favorites Scan
        • Convolutional neural network human gesture recognition algorithm based on phase portrait of surface electromyography energy kernel

          Surface electromyography (sEMG) is a weak signal which is non-stationary and non-periodic. The sEMG classification methods based on time domain and frequency domain features have low recognition rate and poor stability. Based on the modeling and analysis of sEMG energy kernel, this paper proposes a new method to recognize human gestures utilizing convolutional neural network (CNN) and phase portrait of sEMG energy kernel. Firstly, the matrix counting method is used to process the sEMG energy kernel phase portrait into a grayscale image. Secondly, the grayscale image is preprocessed by moving average method. Finally, CNN is used to recognize sEMG of gestures. Experiments on gesture sEMG signal data set show that the effectiveness of the recognition framework and the recognition method of CNN combined with the energy kernel phase portrait have obvious advantages in recognition accuracy and computational efficiency over the area extraction methods. The algorithm in this paper provides a new feasible method for sEMG signal modeling analysis and real-time identification.

          Release date:2021-10-22 02:07 Export PDF Favorites Scan
        • A three dimensional convolutional neural network pulmonary nodule detection algorithm based on the multi-scale attention mechanism

          Early screening based on computed tomography (CT) pulmonary nodule detection is an important means to reduce lung cancer mortality, and in recent years three dimensional convolutional neural network (3D CNN) has achieved success and continuous development in the field of lung nodule detection. We proposed a pulmonary nodule detection algorithm by using 3D CNN based on a multi-scale attention mechanism. Aiming at the characteristics of different sizes and shapes of lung nodules, we designed a multi-scale feature extraction module to extract the corresponding features of different scales. Through the attention module, the correlation information between the features was mined from both spatial and channel perspectives to strengthen the features. The extracted features entered into a pyramid-similar fusion mechanism, so that the features would contain both deep semantic information and shallow location information, which is more conducive to target positioning and bounding box regression. On representative LUNA16 datasets, compared with other advanced methods, this method significantly improved the detection sensitivity, which can provide theoretical reference for clinical medicine.

          Release date:2022-06-28 04:35 Export PDF Favorites Scan
        • Diagnostic value of artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps: a meta-analysis

          Objective To systematically evaluate the diagnostic value of artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps. Methods Pubmed, Embase, Web of Science, Cochrane Library, SinoMed, China National Knowledge Infrastructure, Chongqing VIP and Wanfang databases were searched. The diagnostic trials of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps were comprehensively searched. The search time limit was from January 1, 2000 to October 31, 2022. The included studies were evaluated according to the Quality Assessment of Diagnostic Accuracy Studies-2, and the data were meta-analysed with RevMan 5.3, Meta-Disc 1.4 and Stata 13.0 statistical softwares. Results Finally, 11 articles were included, including 2178 patients. Meta-analysis results of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps showed that the pooled sensitivity was 0.91, the pooled specificity was 0.88, the pooled positive likelihood ratio was 7.41, the pooled negative likelihood ratio was 0.10, the pooled diagnostic odds ratio was 76.45, and the area under the summary receiver operating characteristic curve was 0.957. Among them, 5 articles reported the diagnosis of small adenomatous polyps (diameter <5 mm) by the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system. The results showed that the pooled sensitivity and the pooled specificity were 0.93 and 0.91, respectively, and the area under the summary receiver operating characteristic curve was 0.971. Five articles reported the accuracy of endoscopic diagnosis for adenomatous polyps of those with insufficient experience. The results showed that the pooled sensitivity and the pooled specificity were 0.84 and 0.76, respectively. The area under the summary receiver operating characteristic curve was 0.848. Compared with the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system, the difference was statistically significant (Z=1.979, P=0.048). Conclusion The artificial intelligence assisted narrow-band imaging endoscopy diagnostic system has a high diagnostic accuracy, which can significantly improve the diagnostic accuracy for colorectal adenomatous polyps of those with insufficient endoscopic experience, and can effectively compensate for the adverse impact of their lack of endoscopic experience.

          Release date: Export PDF Favorites Scan
        • Research on the application of convolution neural network in the diagnosis of Alzheimer’s disease

          With the wide application of deep learning technology in disease diagnosis, especially the outstanding performance of convolutional neural network (CNN) in computer vision and image processing, more and more studies have proposed to use this algorithm to achieve the classification of Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal cognition (CN). This article systematically reviews the application progress of several classic convolutional neural network models in brain image analysis and diagnosis at different stages of Alzheimer’s disease, and discusses the existing problems and gives the possible development directions in order to provide some references.

          Release date:2021-04-21 04:23 Export PDF Favorites Scan
        • Review of research on detection and tracking of minimally invasive surgical tools based on deep learning

          The application of minimally invasive surgical tool detection and tracking technology based on deep learning in minimally invasive surgery is currently a research hotspot. This paper firstly expounds the relevant technical content of the minimally invasive surgery tool detection and tracking, which mainly introduces the advantages based on deep learning algorithm. Then, this paper summarizes the algorithm for detection and tracking surgical tools based on fully supervised deep neural network and the emerging algorithm for detection and tracking surgical tools based on weakly supervised deep neural network. Several typical algorithm frameworks and their flow charts based on deep convolutional and recurrent neural networks are summarized emphatically, so as to enable researchers in relevant fields to understand the current research progress more systematically and provide reference for minimally invasive surgeons to select navigation technology. In the end, this paper provides a general direction for the further research of minimally invasive surgical tool detection and tracking technology based on deep learning.

          Release date:2019-12-17 10:44 Export PDF Favorites Scan
        • Classification of heart sound signals in congenital heart disease based on convolutional neural network

          Cardiac auscultation is the basic way for primary diagnosis and screening of congenital heart disease(CHD). A new classification algorithm of CHD based on convolution neural network was proposed for analysis and classification of CHD heart sounds in this work. The algorithm was based on the clinically collected diagnosed CHD heart sound signal. Firstly the heart sound signal preprocessing algorithm was used to extract and organize the Mel Cepstral Coefficient (MFSC) of the heart sound signal in the one-dimensional time domain and turn it into a two-dimensional feature sample. Secondly, 1 000 feature samples were used to train and optimize the convolutional neural network, and the training results with the accuracy of 0.896 and the loss value of 0.25 were obtained by using the Adam optimizer. Finally, 200 samples were tested with convolution neural network, and the results showed that the accuracy was up to 0.895, the sensitivity was 0.910, and the specificity was 0.880. Compared with other algorithms, the proposed algorithm has improved accuracy and specificity. It proves that the proposed method effectively improves the robustness and accuracy of heart sound classification and is expected to be applied to machine-assisted auscultation.

          Release date:2019-12-17 10:44 Export PDF Favorites Scan
        • Atrial fibrillation diagnosis algorithm based on improved convolutional neural network

          Atrial fibrillation (AF) is a common arrhythmia, which can lead to thrombosis and increase the risk of a stroke or even death. In order to meet the need for a low false-negative rate (FNR) of the screening test in clinical application, a convolutional neural network with a low false-negative rate (LFNR-CNN) was proposed. Regularization coefficients were added to the cross-entropy loss function which could make the cost of positive and negative samples different, and the penalty for false negatives could be increased during network training. The inter-patient clinical database of 21 077 patients (CD-21077) collected from the large general hospital was used to verify the effectiveness of the proposed method. For the convolutional neural network (CNN) with the same structure, the improved loss function could reduce the FNR from 2.22% to 0.97% compared with the traditional cross-entropy loss function. The selected regularization coefficient could increase the sensitivity (SE) from 97.78% to 98.35%, and the accuracy (ACC) was 96.62%, which was an increase from 96.49%. The proposed algorithm can reduce the FNR without losing ACC, and reduce the possibility of missed diagnosis to avoid missing the best treatment period. Meanwhile, it provides a universal loss function for the clinical auxiliary diagnosis of other diseases.

          Release date:2021-10-22 02:07 Export PDF Favorites Scan
        • Research on glioma magnetic resonance imaging segmentation based on dual-channel three-dimensional densely connected network

          Focus on the inconsistency of the shape, location and size of brain glioma, a dual-channel 3-dimensional (3D) densely connected network is proposed to automatically segment brain glioma tumor on magnetic resonance images. Our method is based on a 3D convolutional neural network frame, and two convolution kernel sizes are adopted in each channel to extract multi-scale features in different scales of receptive fields. Then we construct two densely connected blocks in each pathway for feature learning and transmission. Finally, the concatenation of two pathway features was sent to classification layer to classify central region voxels to segment brain tumor automatically. We train and test our model on open brain tumor segmentation challenge dataset, and we also compared our results with other models. Experimental results show that our algorithm can segment different tumor lesions more accurately. It has important application value in the clinical diagnosis and treatment of brain tumor diseases.

          Release date:2019-12-17 10:44 Export PDF Favorites Scan
        4 pages Previous 1 2 3 4 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品