1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "convolutional neural network" 38 results
        • Research on glioma magnetic resonance imaging segmentation based on dual-channel three-dimensional densely connected network

          Focus on the inconsistency of the shape, location and size of brain glioma, a dual-channel 3-dimensional (3D) densely connected network is proposed to automatically segment brain glioma tumor on magnetic resonance images. Our method is based on a 3D convolutional neural network frame, and two convolution kernel sizes are adopted in each channel to extract multi-scale features in different scales of receptive fields. Then we construct two densely connected blocks in each pathway for feature learning and transmission. Finally, the concatenation of two pathway features was sent to classification layer to classify central region voxels to segment brain tumor automatically. We train and test our model on open brain tumor segmentation challenge dataset, and we also compared our results with other models. Experimental results show that our algorithm can segment different tumor lesions more accurately. It has important application value in the clinical diagnosis and treatment of brain tumor diseases.

          Release date:2019-12-17 10:44 Export PDF Favorites Scan
        • Detection of inferior myocardial infarction based on densely connected convolutional neural network

          Inferior myocardial infarction is an acute ischemic heart disease with high mortality, which is easy to induce life-threatening complications such as arrhythmia, heart failure and cardiogenic shock. Therefore, it is of great clinical value to carry out accurate and efficient early diagnosis of inferior myocardial infarction. Electrocardiogram is the most sensitive means for early diagnosis of inferior myocardial infarction. This paper proposes a method for detecting inferior myocardial infarction based on densely connected convolutional neural network. The method uses the original electrocardiogram (ECG) signals of serially connected Ⅱ, Ⅲ and aVF leads as the input of the model and extracts the robust features of the ECG signals by using the scale invariance of the convolutional layers. The characteristic transmission of ECG signals is enhanced by the dense connectivity between different layers, so that the network can automatically learn the effective features with strong robustness and high recognition, so as to achieve accurate detection of inferior myocardial infarction. The Physikalisch Technische Bundesanstalt diagnosis public ECG database was used for verification. The accuracy, sensitivity and specificity of the model reached 99.95%, 100% and 99.90%, respectively. The accuracy, sensitivity and specificity of the model are also over 99% even though the noise exists. Based on the results of this study, it is expected that the method can be introduced in the clinical environment to help doctors quickly diagnose inferior myocardial infarction in the future.

          Release date:2020-04-18 10:01 Export PDF Favorites Scan
        • Research on computer aided diagnosis of otitis media based on faster region convolutional neural network

          Otitis media is one of the common ear diseases, and its accurate diagnosis can prevent the deterioration of conductive hearing loss and avoid the overuse of antibiotics. At present, the diagnosis of otitis media mainly relies on the doctor's visual inspection based on the images fed back by the otoscope equipment. Due to the quality of otoscope equipment pictures and the doctor's diagnosis experience, this subjective examination has a relatively high rate of misdiagnosis. In response to this problem, this paper proposes the use of faster region convolutional neural networks to analyze clinically collected digital otoscope pictures. First, through image data enhancement and preprocessing, the number of samples in the clinical otoscope dataset was expanded. Then, according to the characteristics of the otoscope picture, the convolutional neural network was selected for feature extraction, and the feature pyramid network was added for multi-scale feature extraction to enhance the detection ability. Finally, a faster region convolutional neural network with anchor size optimization and hyperparameter adjustment was used for identification, and the effectiveness of the method was tested through a randomly selected test set. The results showed that the overall recognition accuracy of otoscope pictures in the test samples reached 91.43%. The above studies show that the proposed method effectively improves the accuracy of otoscope picture classification, and is expected to assist clinical diagnosis.

          Release date:2022-02-21 01:13 Export PDF Favorites Scan
        • An ensemble model for assisting early Alzheimer's disease diagnosis based on structural magnetic resonance imaging with dual-time-point fusion

          Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder. Due to the subtlety of symptoms in the early stages of AD, rapid and accurate clinical diagnosis is challenging, leading to a high rate of misdiagnosis. Current research on early diagnosis of AD has not sufficiently focused on tracking the progression of the disease over an extended period in subjects. To address this issue, this paper proposes an ensemble model for assisting early diagnosis of AD that combines structural magnetic resonance imaging (sMRI) data from two time points with clinical information. The model employs a three-dimensional convolutional neural network (3DCNN) and twin neural network modules to extract features from the sMRI data of subjects at two time points, while a multi-layer perceptron (MLP) is used to model the clinical information of the subjects. The objective is to extract AD-related features from the multi-modal data of the subjects as much as possible, thereby enhancing the diagnostic performance of the ensemble model. Experimental results show that based on this model, the classification accuracy rate is 89% for differentiating AD patients from normal controls (NC), 88% for differentiating mild cognitive impairment converting to AD (MCIc) from NC, and 69% for distinguishing non-converting mild cognitive impairment (MCInc) from MCIc, confirming the effectiveness and efficiency of the proposed method for early diagnosis of AD, as well as its potential to play a supportive role in the clinical diagnosis of early Alzheimer's disease.

          Release date:2024-06-21 05:13 Export PDF Favorites Scan
        • Research on multi-scale convolutional neural network hand muscle strength prediction model improved based on convolutional attention module

          In order to realize the quantitative assessment of muscle strength in hand function rehabilitation and then formulate scientific and effective rehabilitation training strategies, this paper constructs a multi-scale convolutional neural network (MSCNN) - convolutional block attention module (CBAM) - bidirectional long short-term memory network (BiLSTM) muscle strength prediction model to fully explore the spatial and temporal features of the data and simultaneously suppress useless features, and finally achieve the improvement of the accuracy of the muscle strength prediction model. To verify the effectiveness of the model proposed in this paper, the model in this paper is compared with traditional models such as support vector machine (SVM), random forest (RF), convolutional neural network (CNN), CNN - squeeze excitation network (SENet), MSCNN-CBAM and MSCNN-BiLSTM, and the effect of muscle strength prediction by each model is investigated when the hand force application changes from 40% of the maximum voluntary contraction force (MVC) to 60% of the MVC. The research results show that as the hand force application increases, the effect of the muscle strength prediction model becomes worse. Then the ablation experiment is used to analyze the influence degree of each module on the muscle strength prediction result, and it is found that the CBAM module plays a key role in the model. Therefore, by using the model in this article, the accuracy of muscle strength prediction can be effectively improved, and the characteristics and laws of hand muscle activities can be deeply understood, providing assistance for further exploring the mechanism of hand functions.

          Release date:2025-02-21 03:20 Export PDF Favorites Scan
        • Research progress and challenges of deep learning in medical image registration

          With the development of image-guided surgery and radiotherapy, the demand for medical image registration is stronger and the challenge is greater. In recent years, deep learning, especially deep convolution neural networks, has made excellent achievements in medical image processing, and its research in registration has developed rapidly. In this paper, the research progress of medical image registration based on deep learning at home and abroad is reviewed according to the category of technical methods, which include similarity measurement with an iterative optimization strategy, direct estimation of transform parameters, etc. Then, the challenge of deep learning in medical image registration is analyzed, and the possible solutions and open research are proposed.

          Release date:2019-08-12 02:37 Export PDF Favorites Scan
        • Review of research on detection and tracking of minimally invasive surgical tools based on deep learning

          The application of minimally invasive surgical tool detection and tracking technology based on deep learning in minimally invasive surgery is currently a research hotspot. This paper firstly expounds the relevant technical content of the minimally invasive surgery tool detection and tracking, which mainly introduces the advantages based on deep learning algorithm. Then, this paper summarizes the algorithm for detection and tracking surgical tools based on fully supervised deep neural network and the emerging algorithm for detection and tracking surgical tools based on weakly supervised deep neural network. Several typical algorithm frameworks and their flow charts based on deep convolutional and recurrent neural networks are summarized emphatically, so as to enable researchers in relevant fields to understand the current research progress more systematically and provide reference for minimally invasive surgeons to select navigation technology. In the end, this paper provides a general direction for the further research of minimally invasive surgical tool detection and tracking technology based on deep learning.

          Release date:2019-12-17 10:44 Export PDF Favorites Scan
        • Research on the application of convolution neural network in the diagnosis of Alzheimer’s disease

          With the wide application of deep learning technology in disease diagnosis, especially the outstanding performance of convolutional neural network (CNN) in computer vision and image processing, more and more studies have proposed to use this algorithm to achieve the classification of Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal cognition (CN). This article systematically reviews the application progress of several classic convolutional neural network models in brain image analysis and diagnosis at different stages of Alzheimer’s disease, and discusses the existing problems and gives the possible development directions in order to provide some references.

          Release date:2021-04-21 04:23 Export PDF Favorites Scan
        • Atrial fibrillation diagnosis algorithm based on improved convolutional neural network

          Atrial fibrillation (AF) is a common arrhythmia, which can lead to thrombosis and increase the risk of a stroke or even death. In order to meet the need for a low false-negative rate (FNR) of the screening test in clinical application, a convolutional neural network with a low false-negative rate (LFNR-CNN) was proposed. Regularization coefficients were added to the cross-entropy loss function which could make the cost of positive and negative samples different, and the penalty for false negatives could be increased during network training. The inter-patient clinical database of 21 077 patients (CD-21077) collected from the large general hospital was used to verify the effectiveness of the proposed method. For the convolutional neural network (CNN) with the same structure, the improved loss function could reduce the FNR from 2.22% to 0.97% compared with the traditional cross-entropy loss function. The selected regularization coefficient could increase the sensitivity (SE) from 97.78% to 98.35%, and the accuracy (ACC) was 96.62%, which was an increase from 96.49%. The proposed algorithm can reduce the FNR without losing ACC, and reduce the possibility of missed diagnosis to avoid missing the best treatment period. Meanwhile, it provides a universal loss function for the clinical auxiliary diagnosis of other diseases.

          Release date:2021-10-22 02:07 Export PDF Favorites Scan
        • Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network

          The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.

          Release date:2017-08-21 04:00 Export PDF Favorites Scan
        4 pages Previous 1 2 3 4 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品