1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "deep learning" 51 results
        • Progress in abdominal aortic aneurysm based on artificial intelligence and radiomics

          Objective To review the progress of artificial intelligence (AI) and radiomics in the study of abdominal aortic aneurysm (AAA). Method The literatures related to AI, radiomics and AAA research in recent years were collected and summarized in detail. Results AI and radiomics influenced AAA research and clinical decisions in terms of feature extraction, risk prediction, patient management, simulation of stent-graft deployment, and data mining. Conclusion The application of AI and radiomics provides new ideas for AAA research and clinical decisions, and is expected to suggest personalized treatment and follow-up protocols to guide clinical practice, aiming to achieve precision medicine of AAA.

          Release date:2022-09-20 01:53 Export PDF Favorites Scan
        • A review on multi-modal human motion representation recognition and its application in orthopedic rehabilitation training

          Human motion recognition (HAR) is the technological base of intelligent medical treatment, sports training, video monitoring and many other fields, and it has been widely concerned by all walks of life. This paper summarized the progress and significance of HAR research, which includes two processes: action capture and action classification based on deep learning. Firstly, the paper introduced in detail three mainstream methods of action capture: video-based, depth camera-based and inertial sensor-based. The commonly used action data sets were also listed. Secondly, the realization of HAR based on deep learning was described in two aspects, including automatic feature extraction and multi-modal feature fusion. The realization of training monitoring and simulative training with HAR in orthopedic rehabilitation training was also introduced. Finally, it discussed precise motion capture and multi-modal feature fusion of HAR, as well as the key points and difficulties of HAR application in orthopedic rehabilitation training. This article summarized the above contents to quickly guide researchers to understand the current status of HAR research and its application in orthopedic rehabilitation training.

          Release date:2020-04-18 10:01 Export PDF Favorites Scan
        • Synergistic drug combination prediction in multi-input neural network

          Synergistic effects of drug combinations are very important in improving drug efficacy or reducing drug toxicity. However, due to the complex mechanism of action between drugs, it is expensive to screen new drug combinations through trials. It is well known that virtual screening of computational models can effectively reduce the test cost. Recently, foreign scholars successfully predicted the synergistic value of new drug combinations on cancer cell lines by using deep learning model DeepSynergy. However, DeepSynergy is a two-stage method and uses only one kind of feature as input. In this study, we proposed a new end-to-end deep learning model, MulinputSynergy which predicted the synergistic value of drug combinations by integrating gene expression, gene mutation, gene copy number characteristics of cancer cells and anticancer drug chemistry characteristics. In order to solve the problem of high dimension of features, we used convolutional neural network to reduce the dimension of gene features. Experimental results showed that the proposed model was superior to DeepSynergy deep learning model, with the mean square error decreasing from 197 to 176, the mean absolute error decreasing from 9.48 to 8.77, and the decision coefficient increasing from 0.53 to 0.58. This model could learn the potential relationship between anticancer drugs and cell lines from a variety of characteristics and locate the effective drug combinations quickly and accurately.

          Release date:2020-10-20 05:56 Export PDF Favorites Scan
        • Single-modal neuroimaging computer aided diagnosis for schizophrenia based on ensemble learning using privileged information

          Neuroimaging technologies have been applied to the diagnosis of schizophrenia. In order to improve the performance of the single-modal neuroimaging-based computer-aided diagnosis (CAD) for schizophrenia, an ensemble learning algorithm based on learning using privileged information (LUPI) was proposed in this work. Specifically, the extreme learning machine based auto-encoder (ELM-AE) was first adopted to learn new feature representation for the single-modal neuroimaging data. Random project algorithm was then performed on the learned high-dimensional features to generate several new feature subspaces. After that, multiple feature pairs were built among these subspaces to work as source domain and target domain, respectively, which were used to train multiple support vector machine plus (SVM+) classifier. Finally, a strong classifier is learned by combining these SVM+ classifiers for classification. The proposed algorithm was evaluated on a public schizophrenia neuroimaging dataset, including the data of structural magnetic resonance imaging (sMRI) and functional MRI (fMRI). The results showed that the proposed algorithm achieved the best diagnosis performance. In particular, the classification accuracy, sensitivity and specificity of the proposed algorithm were 72.12% ± 8.20%, 73.50% ± 15.44% and 70.93% ± 12.93%, respectively, on the sMRI data, and it also achieved the classification accuracy of 72.33% ± 8.95%, sensitivity of 68.50% ± 16.58% and specificity of 75.73% ± 16.10% on the fMRI data. The proposed algorithm overcomes the problem that the traditional LUPI methods need the additional privileged information modality as source domain. It can be directly applied to the single-modal data for classification, and also can improve the classification performance. Therefore, it suggests that the proposed algorithm will have wider applications.

          Release date:2020-08-21 07:07 Export PDF Favorites Scan
        • Research progress in lung parenchyma segmentation based on computed tomography

          Lung diseases such as lung cancer and COVID-19 seriously endanger human health and life safety, so early screening and diagnosis are particularly important. computed tomography (CT) technology is one of the important ways to screen lung diseases, among which lung parenchyma segmentation based on CT images is the key step in screening lung diseases, and high-quality lung parenchyma segmentation can effectively improve the level of early diagnosis and treatment of lung diseases. Automatic, fast and accurate segmentation of lung parenchyma based on CT images can effectively compensate for the shortcomings of low efficiency and strong subjectivity of manual segmentation, and has become one of the research hotspots in this field. In this paper, the research progress in lung parenchyma segmentation is reviewed based on the related literatures published at domestic and abroad in recent years. The traditional machine learning methods and deep learning methods are compared and analyzed, and the research progress of improving the network structure of deep learning model is emphatically introduced. Some unsolved problems in lung parenchyma segmentation were discussed, and the development prospect was prospected, providing reference for researchers in related fields.

          Release date:2021-06-18 04:50 Export PDF Favorites Scan
        • Progress in computer-assisted Alberta stroke program early computer tomography score of acute ischemic stroke based on different modal images

          Clinically, non-contrastive computed tomography (NCCT) is used to quickly diagnose the type and area of ??stroke, and the Alberta stroke program early computer tomography score (ASPECTS) is used to guide the next treatment. However, in the early stage of acute ischemic stroke (AIS), it’s difficult to distinguish the mild cerebral infarction on NCCT with the naked eye, and there is no obvious boundary between brain regions, which makes clinical ASPECTS difficult to conduct. The method based on machine learning and deep learning can help physicians quickly and accurately identify cerebral infarction areas, segment brain areas, and operate ASPECTS quantitative scoring, which is of great significance for improving the inconsistency in clinical ASPECTS. This article describes current challenges in the field of AIS ASPECTS, and then summarizes the application of computer-aided technology in ASPECTS from two aspects including machine learning and deep learning. Finally, this article summarizes and prospects the research direction of AIS-assisted assessment, and proposes that the computer-aided system based on multi-modal images is of great value to improve the comprehensiveness and accuracy of AIS assessment, which has the potential to open up a new research field for AIS-assisted assessment.

          Release date:2021-10-22 02:07 Export PDF Favorites Scan
        • Diagnostic value of artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps: a meta-analysis

          Objective To systematically evaluate the diagnostic value of artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps. Methods Pubmed, Embase, Web of Science, Cochrane Library, SinoMed, China National Knowledge Infrastructure, Chongqing VIP and Wanfang databases were searched. The diagnostic trials of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps were comprehensively searched. The search time limit was from January 1, 2000 to October 31, 2022. The included studies were evaluated according to the Quality Assessment of Diagnostic Accuracy Studies-2, and the data were meta-analysed with RevMan 5.3, Meta-Disc 1.4 and Stata 13.0 statistical softwares. Results Finally, 11 articles were included, including 2178 patients. Meta-analysis results of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps showed that the pooled sensitivity was 0.91, the pooled specificity was 0.88, the pooled positive likelihood ratio was 7.41, the pooled negative likelihood ratio was 0.10, the pooled diagnostic odds ratio was 76.45, and the area under the summary receiver operating characteristic curve was 0.957. Among them, 5 articles reported the diagnosis of small adenomatous polyps (diameter <5 mm) by the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system. The results showed that the pooled sensitivity and the pooled specificity were 0.93 and 0.91, respectively, and the area under the summary receiver operating characteristic curve was 0.971. Five articles reported the accuracy of endoscopic diagnosis for adenomatous polyps of those with insufficient experience. The results showed that the pooled sensitivity and the pooled specificity were 0.84 and 0.76, respectively. The area under the summary receiver operating characteristic curve was 0.848. Compared with the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system, the difference was statistically significant (Z=1.979, P=0.048). Conclusion The artificial intelligence assisted narrow-band imaging endoscopy diagnostic system has a high diagnostic accuracy, which can significantly improve the diagnostic accuracy for colorectal adenomatous polyps of those with insufficient endoscopic experience, and can effectively compensate for the adverse impact of their lack of endoscopic experience.

          Release date: Export PDF Favorites Scan
        • Progress of artificial intelligence in endoscopic diagnosis of superficial esophageal squamous carcinoma and precancerous lesions

          Esophageal cancer is a serious threat to the health of Chinese people. The key to solve this problem is early diagnosis and early treatment, and the most important method is endoscopic screening. The rapid development of artificial intelligence (AI) technology makes its application and research in the field of digestive endoscopy growing, and it is expected to become the "right-hand man" for endoscopists in the early diagnosis of esophageal cancer. Currently, the application of multimodal and multifunctional AI systems has achieved good performance in the diagnosis of superficial esophageal squamous cell carcinoma and precancerous lesions. This study summarized and reviewed the research progress of AI in the diagnosis of superficial esophageal squamous cell carcinoma and precancerous lesions, and also explored its development direction in the future.

          Release date:2022-09-20 08:57 Export PDF Favorites Scan
        • Review of research on detection and tracking of minimally invasive surgical tools based on deep learning

          The application of minimally invasive surgical tool detection and tracking technology based on deep learning in minimally invasive surgery is currently a research hotspot. This paper firstly expounds the relevant technical content of the minimally invasive surgery tool detection and tracking, which mainly introduces the advantages based on deep learning algorithm. Then, this paper summarizes the algorithm for detection and tracking surgical tools based on fully supervised deep neural network and the emerging algorithm for detection and tracking surgical tools based on weakly supervised deep neural network. Several typical algorithm frameworks and their flow charts based on deep convolutional and recurrent neural networks are summarized emphatically, so as to enable researchers in relevant fields to understand the current research progress more systematically and provide reference for minimally invasive surgeons to select navigation technology. In the end, this paper provides a general direction for the further research of minimally invasive surgical tool detection and tracking technology based on deep learning.

          Release date:2019-12-17 10:44 Export PDF Favorites Scan
        • Application status and prospects of radiomics in diagnosis and treatment of biliary tract cancer

          Biliary tract cancer is characterized by occult onset, highly malignancy and poor prognosis. Traditional medical imaging is an important tool for surgical strategies and prognostic assessment, but it can no longer meet the urgent need for accurate and individualized treatment in patients with biliary tract cancer. With the advent of the digital imaging era, the advancement of artificial intelligence technology has given a new vitality to digital imaging, and provided more possibilities for the development of medical imaging in clinical applications. The application of radiomics in the diagnosis and differential diagnosis of benign and malignant tumors of biliary tract, assessment of lymph node status, early recurrence and prognosis assessment provides new means for the diagnosis and treatment of patients with biliary tract cancer.

          Release date:2023-02-02 08:55 Export PDF Favorites Scan
        6 pages Previous 1 2 3 ... 6 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品