ObjectiveTo investigate the effects of micro-fracture and insul in-l ike growth factor 1 (IGF-1) in treatment of articular cartilage defect in rabbits.
MethodsTwenty-four New Zealand white rabbits (aged, 4-6 months; weighing, 2.5-3.5 kg) were randomly divided into 4 groups (n=6):micro-fractures and recombinant human IGF-1 (rhIGF-1) treatment group (group A), micro-fracture control group (group B), rhIGF-1 treatment control group (group C), and blank control group (group D). Full thickness articular cartilage defects of 8 mm×6 mm in size were created in the bilateral femoral condyles of all rabbits. The micro-fracture surgery was performed in groups A and B. The 0.1 mL rhIGF-1 (0.01 μg/μL) was injected into the knee cavity in groups A and C at 3 times a week for 4 weeks after operation, while 0.1 mL sal ine was injected in groups B and D at the same time points. At 4, 12, and 24 weeks, the gross, histological, and immunohistochemical observations were performed, and histological score also was processed according to Wakitani's score criteria. The collagen contents in the repair tissues and normal patellofemoral cartilage were detected by the improved hydroxyproline (HPR) method at 24 weeks. Electron microscope was used to observe repair tissues of groups A and B at 24 weeks. Results All animals were survival at the end of experiment. At 24 weeks after operation, defect was repaired with time, and the repair tissue was similar to normal cartilage in group A; the repair tissue was even without boundary with normal cartilage in group B; and the repair tissue was uneven with clear boundary with normal cartilage in groups C and D. Histological staining showed that the repair tissues had no difference with normal cartilage in group A; many oval chondrocytes-l ike cells and l ight-colored matrix were seen in the repair tissues of group B; only a few small spindle-shaped fibroblasts were seen in groups C and D. Moreover, histological scores of group A were significantly better than those of groups B, C, and D (P<0.05) at 4, 12, and 24 weeks. Electron microscope observation showed that a large number of lacuna were seen on the surface of repair tissue in group A, and chondrocytes contained glycogen granules were located in lacunae, and were surrounded with the collagen fibers, which was better than that in group B. Collagen content of the repair tissue in group A was significantly higher than that in groups B, C, and D (P<0.05), but it was significantly lower than that of normal cartilage (P<0.05). Conclusion Combination of micro-fracture and rhIGF-1 for the treatment of full thickness articular cartilage defects could promote the repair of defects by hyaline cartilage.
【Abstract】 Objective To investigate the effectiveness of the medical calcium sulfate—OsteoSet bone graft substitute in the treatment of defect after excision of jaw cyst. Methods Between December 2009 and May 2010, 15 cases of jaw cystic lesion were treated,including 9 males and 6 females with an average age of 36.6 years (range, 15-75 years). Orthopantomography (OPT) method was used to measure the cyst size before operation, and the size ranged from 1.5 cm × 1.5 cm to 8.0 cm × 3.0 cm. The range of bone defect was from 1.5 cm × 1.5 cm × 1.5 cm to 8.0 cm × 3.0 cm × 3.0 cm after cyst excision intraoperatively. The patients underwent cyst curettage and OsteoSet bone graft substitutes implantation (2-15 mL). Radiological method was used to evaluate the repair effect of OsteoSet pellets. Results The pathology biopsy was periapical cyst in 7 cases, odontogenic keratocyst in 5 cases, and dentigerous cyst in 3 cases. Fifteen patients were followed up 6-12 months. Thirteen patients achieved wound healing by first intention; 2 cases had longer drainage time (5 and 7 days, respectively), the incision healed after the pressure bandage. Swelling occurred in 1 case after 1 month with no symptom of infection. No postoperative infection and rejection was found. The X-ray examination showed that the materials filled the bone defect well after 1 day of operation. OsteoSet bone graft substitutes were absorbed by one-half after 1 month of operation and totally after 3 months by OPT. The low density area was smaller in the original cysts cavity, and high density in the cysts increased significantly with fuzzy boundaries of cysts. At 6 months after operation, there was no obvious difference in image density between the original cavity and normal bone, and the capsule cavity boundary disappeared, and defect area was full of new bone. Conclusion The medical calcium sulfate—OsteoSet bone graft substitute is an ideal filling material for bone defect.
Objective To explore the reliability and effectiveness of prediction of the pedicle length of the proximally-based anterolateral thigh (pALT) flap which was used to repair the defects following the resection of various malignant tumors using computed tomographic angiography (CTA). Methods The clinical data of 12 patients who met the selection criteria by using pALT flap to repair wounds left after malignant tumor resection between June 2015 and December 2020 were retrospectively analyzed. There were 5 males and 7 females; the age ranged from 16 to 80 years, with an average age of 54.4 years. After tumor resection, the soft tissue defect ranged from 15 cm×5 cm to 30 cm×12 cm; defect sites included 4 cases of lower abdomen, 3 cases of groin, 2 cases of thigh, and 3 cases of buttocks. Preoperative CTA was used to obtain the location information of the descending branch of the lateral femoral circumflex artery and its perforators by maximum density projection, and the length of the pedicle of pALT flap was estimated. Fasciocutaneous flap (5 cases) or myocutaneous flap (7 cases) were cut during operation to repair the defect, and the size of flap ranged from 20 cm×7 cm to 30 cm×12 cm. The donor site of thigh was directly sutured (11 cases) or repaired with skin graft (1 case). Bland-Altman analysis was used to detect the consistency between the pALT flap vascular pedicle length estimated by CTA and the pALT flap vascular pedicle length actually obtained during operation. ResultsOne case had distal blood supply disturbance of the flap and was repaired with skin graft after debridement; the remaining 11 flaps survived. All donor and recipient incisions healed by first intention. All 12 cases were followed up 1-12 months, with an average of 4.3 months. One patient died of pelvic tumor recurrence at 6 months after operation, and no tumor recurrence was found in the other patients. Preoperative CTA estimated that the length of pALT flap vascular pedicle was 9.3-24.7 cm, with an average of 14.7 cm; the actual length of pALT flap vascular pedicle was 9.5-25.0 cm, with an average of 14.8 cm. Bland-Altman analysis showed that there was no significant difference between the pALT flap vascular pedicle length estimated by CTA before operation and the pALT flap vascular pedicle length actually obtained during operation, and the average difference was 0.1 (95% consistency limit: –0.89, 0.74), indicating that they had good consistency. ConclusionCTA can be accurately used to localize the perforator and predict the possible pedicle length of the pALT flap. When performing a pALT flap surgery, preoperative CTA is helpful for surgeons to make a preliminary assessment of the difficult of the operation. The time for exploration of perforators and dissection of the vascular pedicle, and complications can be reduced, and the safety of the operation can be improved.
Objective
To discuss the role of heparan sulfate (HS) in bone formation and bone remodeling and summarize the research progress in the osteogenic mechanism of HS.
Methods
The domestic and abroad related literature about HS acting on osteoblast cell line in vitro, HS and HS composite scaffold materials acting on the ani-mal bone defect models, and the effect of HS proteoglycans on bone development were summarized and analyzed.
Results
Many growth factors involved in fracture healing especially heparin-binding growth factors, such as fibroblast growth factors, bone morphogenetic protein, and transforming growth factor β, are connected noncovalently with long HS chains. HS proteoglycans protect these proteins from protease degradation and are directly involved in the regulation of growth factors signaling and bone cell function. HS can promote the differentiation of stem cells into osteoblasts and enhance the differentiation of osteoblasts. In bone matrix, HS plays a significant role in promoting the formation, maintaining the stability, and accelerating the mineralization.
Conclusion
The osteogenesis of HS is pronounced. HS is likely to become the clinical treatment measures of fracture nonunion or delayed union, and is expected to provide more choices for bone tissue engineering with identification of its long-term safety.
ObjectiveTo objectively evaluate the effectiveness of the ventricular fold pull-down combined with strip myofascial flap to repair laryngeal defect after early glottic carcinoma operation with glottic morphological parameters and voice parameters.
MethodsBetween January 2008 and December 2012, 47 patients with early glottic carcinoma and anterior commissure involvement underwent partial laryngectomy. All patients were male, aged from 60 to 75 years (mean, 68.5 years). The disease duration was 4-11 months (mean, 7.2 months). According to American Joint Committee on Cancer (AJCC) TNM criteria, 28 cases were classified as T1aN0M0, 14 cases as T1bN0M0, and 5 cases as T2N0M0. Laryngeal defect after resection of tumor was repaired by ventricular fold pull-down combined with strip myofascial flap. At 1 day before operation and at 1 year after operation, multilayer spiral CT was used to scan larynx, to measure and compare the anteroposterior diameter of vocal area, the distance between both sides of the vocal process, and the thickness of soft tissue of vocal area, and the effect of combined soft tissue flap was objectively assessed in laryngeal morphology reconstruction. The actual voice parameters[including F0, Jitter, Shimmer, normalized noise energy (NNE), and maximum phonatory time (MPT)] were tested and compared, and the effect of the combined soft tissue flap on postoperative laryngeal pronunciation was evaluated.
ResultsPostoperative pathological examination revealed well-differentiated squamous cell carcinoma in 38 cases, and moderately-differentiated squamous cell carcinoma in 9 cases; no tumor was found in the resection margin. Healing of neck incision was obtained in all patients at 7-9 days after operation. Forty-four cases were decannulated at 9-11 days after operation and the remaining 3 cases were decannulated at 3 weeks after operation. Oral feeding usually started in all cases at 3-4 days after operation. All patients were followed up 1 year. At 1 year after operation, the anteroposterior diameter of vocal area was significantly reduced when compared with preoperative one (t=15.161, P=0.000); the distance between both sides of the vocal process and the thickness of soft tissue of vocal area had no significant changes (P > 0.05). Compared with preoperative ones, there were significant differences in Shimmer, NNE, and MPT (P < 0.05), but no significant difference was found in F0 and Jitter (P > 0.05) at 1 year after operation.
ConclusionVentricular fold pull-down combined with strip myofascial flap can repair laryngeal defect effectively after partial laryngectomy and maintain the effective airway after operation. It not only has no effect on postoperative laryngeal morphology, but also can be used as new laryngeal voice vibration body.
Objective To construct a new type of self-assembling peptide nanofiber scaffolds—RGDmx, and to study the cell compatibility of the new scaffolds and the proliferation and chondrogenic differentiation of precartilaginous stem cells(PSCs) in scaffolds. Methods PSCs were separated and purified from newborn Sprague Dawley rats by magnetic activated cell sorting and indentified by immunohistochemistry and immunofluorescent staining. The RGDmx were constructed by mixing KLD-12 and KLD-12-PRG at volume ratio of 1 ∶ 1. PSCs at passage 3 were seeded into the KLD-12 scaffold (control group) and RGDmx scaffold (experimental group). The proliferation of PSCs in 2 groups were observed with the method of cell counting kit (CCK) -8 after 1, 3, 7, and 14 days after culture. The RGDmx were constructed by mixing KLD-12-PRG and KLD-12 at different volume ratios of 0, 20%, 40%, 60%, 80%, and 100% and the prol iferation of PSCs was also observed. The complete chondrogenic medium (CCM) was used to induce chondrogenic differentiation of PSCs in different scaffolds. The differentiation of PSCs was observed by toluidine blue staining and RT-PCR assay. Results PSCs were separated and purified successfully, which were identified by immunohistochemistry and immunofluorescent staining methods. The results of CCK-8 showed that the absorbance (A) value in the experimental group increased gradually and reached the highest at 7 days; the A value in the experimental group was significantly higher than that in the control group at 7 days and 14 days (P lt; 0.05). Meanwhile, the A value in the RGDmx scaffold with a volume ratio of 40% was significantly higher than those in others (P lt; 0.05). After 14 days of induction culture with CCM, the toluidine blue staining results were positive in 2 groups; the results of RT-PCR showedthat the expression levels of collagen type II and the aggrecan in the experimental group were significantly higher than those in the control group (P lt; 0.05). Conclusion The self-assembling peptide nanofiber scaffold—RGDmx is an ideal scaffold for tissue engineer because it has good cell compatibility and more effective properties of promoting the differentiation of PSCs to chondrocytes.
ObjectiveTo investigate the feasibility of tissue engineered periosteum (TEP) constructed by porcine small intestinal submucosa (SIS) and bone marrow mesenchymal stem cells (BMSCs) of rabbit to repair the large irregular bone defects in allogenic rabbits.
MethodsThe BMSCs were cultivated from the bone marrow of New Zealand white rabbits (aged, 2 weeks-1 month). SIS was fabricated by porcine proximal jejunum. The TEP constructed by SIS scaffold and BMSCs was prepared in vitro. Eighteen 6-month-old New Zealand white rabbits whose scapula was incompletely resected to establish one side large irregular bone defects (3 cm×3 cm) model. The bone defects were repaired with TEP (experimental group,n=9) and SIS (control group,n=9), respectively. At 8 weeks after operation, the rabbits were sacrificed, and the implants were harvested. The general condition of the rabbits was observed; X-ray radiography and score according to Lane-Sandhu criteria, and histological examination (HE staining and Masson staining) were performed.
ResultsAfter operation, all animals had normal behavior and diet; the incision healed normally. The X-ray results showed new bone formation with normal bone density in the defect area of experimental group; but no bone formation was observed in control group. The X-ray score was 6.67±0.32 in experimental group and was 0.32±0.04 in control group, showing significant difference (t=19.871,P=0.001). The general observation of the specimens showed bone healing at both ends of the defect, and the defect was filled by new bone in experimental group; no new bone formed in the control group. The histological staining showed new bone tissue where there were a lot of new vessels and medullary cavity, and no macrophages or lymphocytes infiltration was observed in the defect area of experimental group; only some connective tissue was found in the control group.
ConclusionTEP constructed by porcine SIS and BMSCs of rabbit can form new bone in allogenic rabbit and has the feasibility to repair the large irregular bone defects.
ObjectiveTo explore the application of three-dimensional (3-D) printing technique in repair and reconstruction of maxillofacial bone defect.
MethodsThe related literature on the recent advance in the application of 3-D printing technique for repair and reconstructing maxillofacial bone defect was reviewed and summarized in the following aspects:3-D models for teaching, preoperative planning, and practicing; surgical templates for accurate positioning during operation; individual implantable prosthetics for repair and reconstructing the maxillofacial bone defect.
Results3-D printing technique is profoundly affecting the treatment level in repair and reconstruction of maxillofacial bone defect.
Conclusion3-D printing technique will promote the development of the repair and reconstructing maxillofacial bone defect toward more accurate, personalized, and safer surgery.
Objective
To evaluate the effectiveness of the submental island flap for repair of oral defects after radical resection of early-stage oral squamous cell carcinoma (OSCC).
Methods
Between February 2010 and August 2011, 15 cases of early-stage OSCC were treated. Of 15 cases, 9 were male and 6 were female, aged from 48 to 71 years (mean, 63 years). The disease duration was 28-73 days (mean, 35 days). Primary lesions included tongue (3 cases), buccal mucosa (8 cases), retromolar area (2 cases), and floor of mouth mucosa (2 cases). According to TNM classification of International Union Against Cancer (UICC, 2002) of oral cancer and oropharyngeal cancer, 2 cases were classified as T1N0M0 and 13 cases as T2N0M0. The results of the pathologic type were high differentiated squamous cell carcinoma in 11 cases and moderately differentiated squamous cell carcinoma in 4 cases. The defect after resection of the lesion ranged from 5 cm × 3 cm to 8 cm × 6 cm. All the cases underwent radical resection of the primary lesion and immediate reconstruction with submental island flap except 1 case with radial forearm free flap because of no definite venous drainage. The sizes of the submental island flap varied from 6 cm × 4 cm to 9 cm × 6 cm.
Results
Operation time ranged from 4 hours and 30 minutes to 7 hours and 10 minutes (mean, 5 hours and 53 minutes) in 14 cases undergoing repair with submental island flap. All the flaps survived completely in 13 cases except 1 case having superficial necrosis of the flap, which was cured after conservative treatment. Temporary marginal mandibular nerve palsy occurred in 1 case, and was cured after 3 months; submandibular effusion was observed in 3 cases, and was cured after expectant treatment. The follow-up period ranged from 8 to 15 months (mean, 10.5 months) in 14 cases undergoing repair with submental island flap. Hair growth was seen on the flap and became sparse after 3 months in 2 male cases. The appearance of the face, opening mouth, swallowing, and speech were recovered well in 14 cases, and the donor site had no obvious scar. The follow-up period was 13 months in 1 case undergoing repair with radical free forearm flap, and the appearance and function were recovered well. No local recurrence was found during follow-up.
Conclusion
The submental island flap has reliable blood supply, and could be harvested simply and rapidly. It can be used to repair oral defects in patients with early-stage OSCC after radical resection.
Objective To explore the effect of short-term low-frequency electrical stimulation (SLES) during operation on nerve regeneration in delayed peripheral nerve injury with long gap. Methods Thirty female adult Sprague Dawley rats, weighing 160-180 g, were used to prepare 13-mm defect model by trimming the nerve stumps. Then all rats were randomly divided into 2 groups, 15 rats in each group. After nerve defect was bridged by the contralateral normal sciatic nerve, SLES was applied in the experimental group, but was not in the control group. The spinal cords and dorsal root ganglions (DRGs) were harvested to carry out immunofluorescence histochemistry double staining for growth-associated proteins 43 (GAP-43) and brain-derived neurotrophic factor (BDNF) at 1, 2, and 7 days after repair. Fluorogold (FG) retrograde tracing was performed at 3 months after repair. The mid-portion regenerated segments were harvested to perform Meyer’s trichrome staining, immunofluorescence double staining for neurofilament (NF) and soluble protein 100 (S-100) on the transversely or longitudinal sections at 3 months after repair. The segment of the distal sciatic nerve trunk was harvested for electron microscopy and morphometric analyses to measure the diameter of the myelinated axons, thickness of myelin sheaths, the G ratio, and the density of the myelinated nerve fibers. The gastrocnemius muscles of the operated sides were harvested to measure the relative wet weight ratios. Karnovsky-Root cholinesterase staining of the motor endplate was carried out. Results In the experimental group, the expressions of GAP-43 and BDNF were higher than those in the control group at 1 and 2 days after repair. The number of labeled neurons in the anterior horn of gray matter in the spinal cord and DRGs at the operated side from the experimental group was more than that from the control group. Meyer’s trichrome staining, immunofluorescence double staining, and the electron microscopy observation showed that the regenerated nerves were observed to develop better in the experimental group than the control group. The relative wet weight ratio of experimental group was significantly higher than that of the control group (t=4.633,P=0.000). The size and the shape of the motor endplates in the experimental group were better than those in the control group. Conclusion SLES can promote the regeneration ability of the short-term (1 month) delayed nerve injury with long gap to a certain extent.