1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "electrical stimulation" 29 results
        • Design of an Embedded Stroke Rehabilitation Apparatus System Based on Linux Computer Engineering

          A realizaton project of electrical stimulator aimed at motor dysfunction of stroke is proposed in this paper. Based on neurophysiological biofeedback, this system, using an ARM9 S3C2440 as the core processor, integrates collection and display of surface electromyography (sEMG) signal, as well as neuromuscular electrical stimulation (NMES) into one system. By embedding Linux system, the project is able to use Qt/Embedded as a graphical interface design tool to accomplish the design of stroke rehabilitation apparatus. Experiments showed that this system worked well.

          Release date: Export PDF Favorites Scan
        • Expression of Myocardial Specificity Markers MEF-2C and Cx43 in Rat Bone Marrow-derived Mesenchymal Stem Cells Induced by Electrical Stimulation In Vitro

          Bone marrow-derived mesenchymal stem cells (BMSCs) for repairing damaged heart tissue are a new kind of important treatment options because of their potential to differentiate into cardiomyocytes. We in this experiment investigated the effect of different electrical stimulation time on the expression of myocardial specificity gene and protein in rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. The rBMSCs of second or third generation were randomly divided into three groups, i.e. electrical stimulation (ES) group, 5-Azacytidine (5-Aza) group and the control group. The rBMSCs in the ES groups with complete medium were exposed to 2 V, 2 Hz, 5 ms electrical stimulation for 0.5 h, 2 h, 4 h, and 6 h respectively every day for 10 days. Those in the 5-Aza group were induced by 5-Aza (10 μmol/L) for 24 h, and then cultured with complete medium for 10 days. Those in the control group were only cultured with complete medium, without any treatment, for 10 days. The rBMSCs' morphological feature in each group was observed with inverted phase microscope. The mRNA expression of myocyte-specific enhancer factor 2C (MEF-2C) and connexin 43 (Cx43) were examined with Real-Time quantitative PCR and the protein expression of MEF-2C, Cx43 were detected with Western Blot method. The results showed that the mRNA expression level of the MEF-2C, Cx43 and the protein expression level of MEF-2C, Cx43 were significantly higher in the ES group and 5-Aza group than those in the relative control group (P < 0.05). It suggests that electrical stimulation could play a part of role in the induction of the rBMSCs to differentiate into the cariomyocyte-like cells in vitro and the effectiveness of the electrical stimulation with 2 h/d had the best in our experiement. But the mechanism how electrical stimulation promotes the differentiation of rBMSC into cardiomyocyte is still unclear.

          Release date: Export PDF Favorites Scan
        • Design of functional array electrode stimulation system with surface electromyography feedback

          In order to solve the problems of insufficient stimulation channels and lack of stimulation effect feedback in the current electrical stimulation system, a functional array electrode electrical stimulation system with surface electromyography (sEMG) feedback was designed in this paper. Firstly, the effectiveness of the system was verified through in vitro and human experiments. Then it was confirmed that there were differences in the number of amperage needed to achieve the same stimulation stage among individuals, and the number of amperage required by men was generally less than that of women. Finally, it was verified that the current required for square wave stimulation was smaller than that for differential wave stimulation if the same stimulation stage was reached. This system combined the array electrode and sEMG feedback to improve the accuracy of electrical stimulation and performed the whole process recording of feedback sEMG signal in the process of electrical stimulation, and the electrical stimulation parameters could change with the change of the sEMG signal. The electrical stimulation system and sEMG feedback worked together to form a closed-loop electrical stimulation working system, so as to improve the efficiency of electrical stimulation rehabilitation treatment. In conclusion, the functional array electrode electrical stimulation system with sEMG feedback developed in this paper has the advantages of simple operation, small size and low power consumption, which lays a foundation for the introduction of electrical stimulation rehabilitation treatment equipment into the family, and also provides certain reference for the development of similar products in the future.

          Release date:2021-02-08 06:54 Export PDF Favorites Scan
        • Adaptive repetitive control of wrist tremor suppression based on functional electrical stimulation

          Tremor is an involuntary and repetitive swinging movement of limb, which can be regarded as a periodic disturbance in tremor suppression system based on functional electrical stimulation (FES). Therefore, using repetitive controller to adjust the level and timing of FES applied to the corresponding muscles, so as to generate the muscle torque opposite to the tremor motion, is a feasible means of tremor suppression. At present, most repetitive control systems based on FES assume that tremor is a fixed single frequency signal, but in fact, tremor may be a multi-frequency signal and the tremor frequency also varies with time. In this paper, the tremor data of intention tremor patients are analyzed from the perspective of frequency, and an adaptive repetitive controller with internal model switching is proposed to suppress tremor signals with different frequencies. Simulation and experimental results show that the proposed adaptive repetitive controller based on parallel multiple internal models and series high-order internal model switching can suppress tremor by up to 84.98% on average, which is a significant improvement compared to the traditional single internal model repetitive controller and filter based feedback controller. Therefore, the adaptive repetitive control method based on FES proposed in this paper can effectively address the issue of wrist intention tremor in patients, and can offer valuable technical support for the rehabilitation of patients with subsequent motor dysfunction.

          Release date: Export PDF Favorites Scan
        • Design of a System for Real-time Seizure Detection and Closed-loop Electrical Stimulation

          In order to investigate the effect of deep brain stimulation on diseases such as epilepsy, we developed a closed-loop electrical stimulation system using LabVIEW virtual instrument environment and NI data acquisition card. The system was used to detect electrical signals of epileptic seizures automatically and to generate electrical stimuli. We designed a novel automatic detection algorithm of epileptic seizures by combining three features of field potentials: the amplitude, slope and coastline index. Experimental results of rat epileptic model in the hippocampal region showed that the system was able to detect epileptic seizures with an accuracy rate 91.3% and false rate 8.0%. Furthermore, the on-line high frequency electrical stimuli showed a suppression effect on seizures. In addition, the system was adaptive and flexible with multiple work modes, such as automatic and manual modes. Moreover, the simple time-domain algorithm of seizure detection guaranteed the real-time feature of the system and provided an easy-to-use equipment for the experiment researches of epilepsy control by electrical stimulation.

          Release date:2021-06-24 10:16 Export PDF Favorites Scan
        • Analysis of the effect of neuromuscular electrical stimulation on corticomuscular coupling during standing balance

          Neuromuscular electrical stimulation (NMES) has been proven to promote human balance, but research on its impact on motor ability mainly focuses on external physical analysis, with little analysis on the intrinsic neural regulatory mechanisms. This study, for the first time, investigated the effects of NMES on cortical activity and cortico-muscular functional coupling (CMFC) during standing balance. Twelve healthy subjects were recruited in bilateral NMES training, with each session consisting of 60 electrically induced isometric contractions. Electroencephalogram (EEG) signals, electromyogram (EMG) signals, and center of pressure (COP) signals of the foot sole were collected before stimulation, two weeks after stimulation, and four weeks after stimulation while the subjects maintained standing balance. The results showed that NMES training improved subjects' postural stability during standing balance. Additionally, based on the EMG power spectral density (PSD), the κ frequency band was defined, and EEG-EMG time-frequency maximal information coefficients (TFMIC) were calculated. It was found that NMES enhanced functional connectivity between the cortex and lower limb muscles, with varying degrees of increase in β-κ and γ-κ frequency band CMFC after stimulation. Furthermore, sample entropy (SE) of EEG signals also increased after training. The results of this study confirm that NMES training can enhance CMFC and brain activation during standing balance. This study, from the perspective of physiological electrical signals, validates the effectiveness of NMES for balance training and provides objective assessment metrics for the training effects of NMES.

          Release date:2024-12-27 03:50 Export PDF Favorites Scan
        • Orthotic Effect of Functional Electrical Stimulation on the Improvement of Walking in Stroke Patients with Foot Drop: A Systematic Review

          Objective To systematically evaluate the orthotic effect of functional electrical stimulation (FES) on the improvement of walking in stroke patients with foot drop. Methods The randomized controlled trials (RCTs) that investigated the orthotic effect of FES on walking in stroke patients with foot drop were electronically searched in the databases such as PubMed, Web of Science, The Cochrane Library (Issue 1, 2013), EMbase, CBM, CNKI, VIP and WanFang Data from January 2000 to January 2013, and the relevant references of included papers were also manually searched. Two reviewers independently screened the trials according to the inclusion and exclusion criteria, extracted the data, and assessed the methodology quality. The meta-analyses were performed using RevMan 5.1 software. Results A total of 8 RCTs involving 255 patients were included. The results of meta-analyses on 4 RCTs showed that, compared with the conventional rehabilitation intervention, the functional electrical stimulation could significantly improve the walking speed, with significant difference (MD=0.09, 95%CI 0.00 to 0.18, P=0.04). The other indicators were only descriptively analyzed due to the incomplete data. Conclusions Functional electrical stimulation is effective in improving walking speed, but it is uncertain of other therapeutic indicators. So it should be further proved by conducting more high quality, large sample and multi-center RCTs.

          Release date: Export PDF Favorites Scan
        • Effect of short-term low-frequency electrical stimulation on nerve regeneration of delayed nerve defect during operation

          Objective To explore the effect of short-term low-frequency electrical stimulation (SLES) during operation on nerve regeneration in delayed peripheral nerve injury with long gap. Methods Thirty female adult Sprague Dawley rats, weighing 160-180 g, were used to prepare 13-mm defect model by trimming the nerve stumps. Then all rats were randomly divided into 2 groups, 15 rats in each group. After nerve defect was bridged by the contralateral normal sciatic nerve, SLES was applied in the experimental group, but was not in the control group. The spinal cords and dorsal root ganglions (DRGs) were harvested to carry out immunofluorescence histochemistry double staining for growth-associated proteins 43 (GAP-43) and brain-derived neurotrophic factor (BDNF) at 1, 2, and 7 days after repair. Fluorogold (FG) retrograde tracing was performed at 3 months after repair. The mid-portion regenerated segments were harvested to perform Meyer’s trichrome staining, immunofluorescence double staining for neurofilament (NF) and soluble protein 100 (S-100) on the transversely or longitudinal sections at 3 months after repair. The segment of the distal sciatic nerve trunk was harvested for electron microscopy and morphometric analyses to measure the diameter of the myelinated axons, thickness of myelin sheaths, the G ratio, and the density of the myelinated nerve fibers. The gastrocnemius muscles of the operated sides were harvested to measure the relative wet weight ratios. Karnovsky-Root cholinesterase staining of the motor endplate was carried out. Results In the experimental group, the expressions of GAP-43 and BDNF were higher than those in the control group at 1 and 2 days after repair. The number of labeled neurons in the anterior horn of gray matter in the spinal cord and DRGs at the operated side from the experimental group was more than that from the control group. Meyer’s trichrome staining, immunofluorescence double staining, and the electron microscopy observation showed that the regenerated nerves were observed to develop better in the experimental group than the control group. The relative wet weight ratio of experimental group was significantly higher than that of the control group (t=4.633,P=0.000). The size and the shape of the motor endplates in the experimental group were better than those in the control group. Conclusion SLES can promote the regeneration ability of the short-term (1 month) delayed nerve injury with long gap to a certain extent.

          Release date:2017-04-01 08:56 Export PDF Favorites Scan
        • Effect of phrenic nerve electrical stimulation on extubation outcomes in mechanically ventilated ICU patients: a meta-analysis

          ObjectiveTo assess the effectiveness of phrenic nerve electrical stimulation (PNES) on extubation outcomes in intensive care unit (ICU) patients undergoing mechanical ventilation using a meta-analysis approach. Methods A comprehensive search was conducted on the Cochrane Library, PubMed, Web of Science, Embase, and China National Knowledge Infrastructure (CNKI) for randomized controlled trials (RCTs) published from database inception to December 2023, evaluating the effect of PNES on extubation outcomes in ICU patients receiving mechanical ventilation. The control group received standard rehabilitation measures, while the intervention group received PNES in addition to standard rehabilitation. Two reviewers independently screened the literature, extracted data, and assessed the risk of bias. Meta-analysis was performed using RevMan5.4 software. Results Nine RCTs were included in the final analysis. The quality assessment indicated that one study was rated as Grade A and eight as Grade B, reflecting relatively high study quality. Meta-analysis results demonstrated that PNES significantly improved extubation success rates [relative risk (RR)=1.33, 95%CI 1.09 - 1.62, P=0.006], maximal inspiratory pressure (MIP) [mean difference (MD)=1.36, 95%CI 0.46 - 2.27, P=0.003], and diaphragmatic thickness fraction (DTF) (MD=7.11, 95%CI 0.53 - 13.69, P=0.03) compared with the control group. PNES also significantly reduced the duration of mechanical ventilation (MD=–2.23, 95%CI –3.07- –1.38, P<0.000 01), re-intubation rates (RR=0.35, 95%CI 0.15 - 0.85, P=0.02), and rapid shallow breathing index (RSBI) (MD=–11.57, 95%CI –18.51 - –4.62, P=0.001). Additionally, PNES shortened ICU length of stay (MD=–4.03, 95%CI –5.95 - –2.11, P<0.000 1), with all differences being statistically significant. Conclusion PNES effectively reduces the duration of mechanical ventilation and ICU length of stay, decreases re-intubation rates and RSBI, and improves extubation success, MIP, and DTF in ICU patients. Future high-quality, large-scale, multi-center RCTs are needed to further validate these findings.

          Release date:2025-02-08 09:53 Export PDF Favorites Scan
        • Quantitative analysis of transcranial temporal interference stimulation in rodents: A simulation study on electrode configurations

          Transcranial temporal interference stimulation (tTIS) is a novel non-invasive transcranial electrical stimulation technique that achieves deep brain stimulation through multiple electrodes applying electric fields of different frequencies. Current studies on the mechanism of tTIS effects are primarily based on rodents, but experimental outcomes are often significantly influenced by electrode configurations. To enhance the performance of tTIS within the limited cranial space of rodents, we proposed various electrode configurations for tTIS and conducted finite element simulations using a realistic mouse model. Results demonstrated that ventral-dorsal, four-channel bipolar, and two-channel configurations performed best in terms of focality, diffusion of activated brain regions, and scalp impact, respectively. Compared to traditional transcranial direct current stimulation (tDCS), these configurations improved by 94.83%, 50.59%, and 3 514.58% in the respective evaluation metrics. This study provides a reference for selecting electrode configurations in future tTIS research on rodents.

          Release date:2025-04-24 04:31 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品