The detection of electrocardiogram (ECG) characteristic wave is the basis of cardiovascular disease analysis and heart rate variability analysis. In order to solve the problems of low detection accuracy and poor real-time performance of ECG signal in the state of motion, this paper proposes a detection algorithm based on segmentation energy and stationary wavelet transform (SWT). Firstly, the energy of ECG signal is calculated by segmenting, and the energy candidate peak is obtained after moving average to detect QRS complex. Secondly, the QRS amplitude is set to zero and the fifth component of SWT is used to locate P wave and T wave. The experimental results show that compared with other algorithms, the algorithm in this paper has high accuracy in detecting QRS complex in different motion states. It only takes 0.22 s to detect QSR complex of a 30-minute ECG record, and the real-time performance is improved obviously. On the basis of QRS complex detection, the accuracy of P wave and T wave detection is higher than 95%. The results show that this method can improve the efficiency of ECG signal detection, and provide a new method for real-time ECG signal classification and cardiovascular disease diagnosis.
Lorenz plot (LP) method which gives a global view of long-time electrocardiogram signals, is an efficient simple visualization tool to analyze cardiac arrhythmias, and the morphologies and positions of the extracted attractors may reveal the underlying mechanisms of the onset and termination of arrhythmias. But automatic diagnosis is still impossible because it is lack of the method of extracting attractors by now. We presented here a methodology of attractor extraction and recognition based upon homogeneously statistical properties of the location parameters of scatter points in three dimensional LP (3DLP), which was constructed by three successive RR intervals as X, Y and Z axis in Cartesian coordinate system. Validation experiments were tested in a group of RR-interval time series and tags data with frequent unifocal premature complexes exported from a 24-hour Holter system. The results showed that this method had excellent effective not only on extraction of attractors, but also on automatic recognition of attractors by the location parameters such as the azimuth of the points peak frequency (APF) of eccentric attractors once stereographic projection of 3DLP along the space diagonal. Besides, APF was still a powerful index of differential diagnosis of atrial and ventricular extrasystole. Additional experiments proved that this method was also available on several other arrhythmias. Moreover, there were extremely relevant relationships between 3DLP and two dimensional LPs which indicate any conventional achievement of LPs could be implanted into 3DLP. It would have a broad application prospect to integrate this method into conventional long-time electrocardiogram monitoring and analysis system.
Electrocardiogram (ECG) is a noninvasive, inexpensive, and convenient test for diagnosing cardiovascular diseases and assessing the risk of cardiovascular events. Although there are clear standardized operations and procedures for ECG examination, the interpretation of ECG by even trained physicians can be biased due to differences in diagnostic experience. In recent years, artificial intelligence has become a powerful tool to automatically analyze medical data by building deep neural network models, and has been widely used in the field of medical image diagnosis such as CT, MRI, ultrasound and ECG. This article mainly introduces the application progress of deep neural network models in ECG diagnosis and prediction of cardiovascular diseases, and discusses its limitations and application prospects.
Sleep apnea (SA) detection method based on traditional machine learning needs a lot of efforts in feature engineering and classifier design. We constructed a one-dimensional convolutional neural network (CNN) model, which consists in four convolution layers, four pooling layers, two full connection layers and one classification layer. The automatic feature extraction and classification were realized by the structure of the proposed CNN model. The model was verified by the whole night single-channel sleep electrocardiogram (ECG) signals of 70 subjects from the Apnea-ECG dataset. Our results showed that the accuracy of per-segment SA detection was ranged from 80.1% to 88.0%, using the input signals of single-channel ECG signal, RR interval (RRI) sequence, R peak sequence and RRI sequence + R peak sequence respectively. These results indicated that the proposed CNN model was effective and can automatically extract and classify features from the original single-channel ECG signal or its derived signal RRI and R peak sequence. When the input signals were RRI sequence + R peak sequence, the CNN model achieved the best performance. The accuracy, sensitivity and specificity of per-segment SA detection were 88.0%, 85.1% and 89.9%, respectively. And the accuracy of per-recording SA diagnosis was 100%. These findings indicated that the proposed method can effectively improve the accuracy and robustness of SA detection and outperform the methods reported in recent years. The proposed CNN model can be applied to portable screening diagnosis equipment for SA with remote server.
In order to solve the problem that the early onset of paroxysmal atrial fibrillation is very short and difficult to detect, a detection algorithm based on sparse coding of Riemannian manifolds is proposed. The proposed method takes into account that the nonlinear manifold geometry is closer to the real feature space structure, and the computational covariance matrix is used to characterize the heart rate variability (RR interval variation), so that the data is in the Riemannian manifold space. Sparse coding is applied to the manifold, and each covariance matrix is represented as a sparse linear combination of Riemann dictionary atoms. The sparse reconstruction loss is defined by the affine invariant Riemannian metric, and the Riemann dictionary is learned by iterative method. Compared with the existing methods, this method used shorter heart rate variability signal, the calculation was simple and had no dependence on the parameters, and the better prediction accuracy was obtained. The final classification on MIT-BIH AF database resulted in a sensitivity of 99.34%, a specificity of 95.41% and an accuracy of 97.45%. At the same time, a specificity of 95.18% was realized in MIT-BIH NSR database. The high precision paroxysmal atrial fibrillation detection algorithm proposed in this paper has a potential application prospect in the long-term monitoring of wearable devices.
Ballistocardiogram (BCG) and electrocardiogram (ECG) can realize the detection of cardiac function from mechanical and electrical dimensions respectively. By extracting the corresponding characteristic parameters of the two signals and carrying out joint analysis, an important cardiac physiological index such as cardiac contractility, can be reflected. To overcome the shortcomings of complication and heaviness of the existing acquisition equipment, a wearable BCG-ECG signal acquisition system is designed in this paper, which realizes BCG signal acquisition based on accelerometer and ECG signal acquisition based on conductive rubber electrodes. The signals of 6 healthy persons were collected, and BCG signals collected by piezoelectric films were used as reference signals. The waveform characteristics of signals were compared, and the difference of cardiac cycle acquisition was analyzed. The waveform characteristics of the two signals acquired by the device were consistent with the standard signals, and there was no significant difference in the acquisition of the cardiac cycle between the proposed method and the traditional method. The results show that the system can accurately collect human BCG signals and ECG signals. The system provides a basis for subsequent research on BCG signal formation mechanism and health applications.
In the extraction of fetal electrocardiogram (ECG) signal, due to the unicity of the scale of the U-Net same-level convolution encoder, the size and shape difference of the ECG characteristic wave between mother and fetus are ignored, and the time information of ECG signals is not used in the threshold learning process of the encoder’s residual shrinkage module. In this paper, a method of extracting fetal ECG signal based on multi-scale residual shrinkage U-Net model is proposed. First, the Inception and time domain attention were introduced into the residual shrinkage module to enhance the multi-scale feature extraction ability of the same level convolution encoder and the utilization of the time domain information of fetal ECG signal. In order to maintain more local details of ECG waveform, the maximum pooling in U-Net was replaced by Softpool. Finally, the decoder composed of the residual module and up-sampling gradually generated fetal ECG signals. In this paper, clinical ECG signals were used for experiments. The final results showed that compared with other fetal ECG extraction algorithms, the method proposed in this paper could extract clearer fetal ECG signals. The sensitivity, positive predictive value, and F1 scores in the 2013 competition data set reached 93.33%, 99.36%, and 96.09%, respectively, indicating that this method can effectively extract fetal ECG signals and has certain application values for perinatal fetal health monitoring.
In order to reduce the mortality rate of cardiovascular disease patients effectively, improve the electrocardiogram (ECG) accuracy of signal acquisition, and reduce the influence of motion artifacts caused by the electrodes in inappropriate location in the clothing for ECG measurement, we in this article present a research on the optimum place of ECG electrodes in male clothing using three-lead monitoring methods. In the 3-lead ECG monitoring clothing for men we selected test points. Comparing the ECG and power spectrum analysis of the acquired ECG signal quality of each group of points, we determined the best location of ECG electrodes in the male monitoring clothing. The electrode motion artifacts caused by improper location had been significantly improved when electrodes were put in the best position of the clothing for men. The position of electrodes is crucial for ECG monitoring clothing. The stability of the acquired ECG signal could be improved significantly when electrodes are put at optimal locations.
Ambulatory electrocardiogram (ECG) monitoring can effectively reduce the risk and death rate of patients with cardiovascular diseases (CVDs). The Body Sensor Network (BSN) based ECG monitoring is a new and efficient method to protect the CVDs patients. To meet the challenges of miniaturization, low power and high signal quality of the node, we proposed a novel 50 mm×50 mm×10 mm, 30 g wireless ECG node, which includes the single-chip analog front-end AD8232, ultra-low power microprocessor MSP430F1611 and Bluetooth module HM-11. The ECG signal quality is guaranteed by the on-line digital filtering. The difference threshold algorithm results in accuracy of R-wave detection and heart rate. Experiments were carried out to test the node and the results showed that the proposed node reached the design target, and it has great potential in application of wireless ECG monitoring.
Heart rate variability (HRV) is the difference between the successive changes in the heartbeat cycle, and it is produced in the autonomic nervous system modulation of the sinus node of the heart. The HRV is a valuable indicator in predicting the sudden cardiac death and arrhythmic events. Traditional analysis of HRV is based on a multi-electrocardiogram (ECG), but the ECG signal acquisition is complex, so we have designed an HRV analysis system based on photoplethysmography (PPG). PPG signal is collected by a microcontroller from human’s finger, and it is sent to the terminal via USB-Serial module. The terminal software not only collects the data and plot waveforms, but also stores the data for future HRV analysis. The system is small in size, low in power consumption, and easy for operation. It is suitable for daily care no matter whether it is used at home or in a hospital.