1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "electromyography" 30 results
        • Research on muscle fatigue recognition model based on improved wavelet denoising and long short-term memory

          The automatic recognition technology of muscle fatigue has widespread application in the field of kinesiology and rehabilitation medicine. In this paper, we used surface electromyography (sEMG) to study the recognition of leg muscle fatigue during circuit resistance training. The purpose of this study was to solve the problem that the sEMG signals have a lot of noise interference and the recognition accuracy of the existing muscle fatigue recognition model is not high enough. First, we proposed an improved wavelet threshold function denoising algorithm to denoise the sEMG signal. Then, we build a muscle fatigue state recognition model based on long short-term memory (LSTM), and used the Holdout method to evaluate the performance of the model. Finally, the denoising effect of the improved wavelet threshold function denoising method proposed in this paper was compared with the denoising effect of the traditional wavelet threshold denoising method. We compared the performance of the proposed muscle fatigue recognition model with that of particle swarm optimization support vector machine (PSO-SVM) and convolutional neural network (CNN). The results showed that the new wavelet threshold function had better denoising performance than hard and soft threshold functions. The accuracy of LSTM network model in identifying muscle fatigue was 4.89% and 2.47% higher than that of PSO-SVM and CNN, respectively. The sEMG signal denoising method and muscle fatigue recognition model proposed in this paper have important implications for monitoring muscle fatigue during rehabilitation training and exercise.

          Release date:2022-08-22 03:12 Export PDF Favorites Scan
        • Construction and analysis of muscle functional network for exoskeleton robot

          Exoskeleton nursing robot is a typical human-machine co-drive system. To full play the subjective control and action orientation of human, it is necessary to comprehensively analyze exoskeleton wearer’s surface electromyography (EMG) in the process of moving patients, especially identifying the spatial distribution and internal relationship of the EMG information. Aiming at the location of electrodes and internal relation between EMG channels, the complex muscle system at the upper limb was abstracted as a muscle functional network. Firstly, the correlation characteristics were analyzed among EMG channels of the upper limb using the mutual information method, so that the muscle function network was established. Secondly, by calculating the characteristic index of network node, the features of muscle function network were analyzed for different movements. Finally, the node contraction method was applied to determine the key muscle group that reflected the intention of wearer’s movement, and the characteristics of muscle function network were analyzed in each stage of moving patients. Experimental results showed that the location of the myoelectric collection could be determined quickly and efficiently, and also various stages of the moving process could effectively be distinguished using the muscle functional network with the key muscle groups. This study provides new ideas and methods to decode the relationship between neural controls of upper limb and physical motion.

          Release date:2019-08-12 02:37 Export PDF Favorites Scan
        • Detection study of walking segments of children with cerebral-palsy based on surface electromyographic signals

          In this study, surface electromyography (sEMG) of the lower limbs of cerebral-palsy (CP) subjects in gait cycle was recorded and its parameters of gait cycle characters were analyzed to assess their clinical severity. Three algorithms, including integrated profile (IP), sample-entropy (SampEN) and smooth nonlinear energy operator (SNEO) algorithm, were applied to calculate the duration of walking sEMG segments in simulated SEMG signals. After that, the efficiency and accuracy were compared among these three algorithms. SNEO was then selected as the optimal algorithm among the three algorithms and employed for real sEMG signal processing of CP subjects. The results indicated that there was no significant difference in the accuracy of sEMG segement detection for the three algorithms. However, the computation speed of SNEO algorithm was much faster than those of the others and thus it was a suitable algorithm for detecting walking sEMG segments of CP subjects. In addition, the positive correlation was found between the clinical severity and the mean duration of walking sEMG segments in CP subjects. The results indicated that there was a significant difference in the three groups of CP subjects with different levels of severity. Our findings showed that the mean duration of walking sEMG segments could be considered as an assistant index to evaluate the clinical severity of CP subjects.

          Release date:2017-06-19 03:24 Export PDF Favorites Scan
        • Recognition of Walking Stance Phase and Swing Phase Based on Moving Window

          Wearing transfemoral prosthesis is the only way to complete daily physical activity for amputees. Motion pattern recognition is important for the control of prosthesis, especially in the recognizing swing phase and stance phase. In this paper, it is reported that surface electromyography (sEMG) signal is used in swing and stance phase recognition. sEMG signal of related muscles was sampled by Infiniti of a Canadian company. The sEMG signal was then filtered by weighted filtering window and analyzed by height permitted window. The starting time of stance phase and swing phase is determined through analyzing special muscles. The sEMG signal of rectus femoris was used in stance phase recognition and sEMG signal of tibialis anterior is used in swing phase recognition. In a certain tolerating range, the double windows theory, including weighted filtering window and height permitted window, can reach a high accuracy rate. Through experiments, the real walking consciousness of the people was reflected by sEMG signal of related muscles. Using related muscles to recognize swing and stance phase is reachable. The theory used in this paper is useful for analyzing sEMG signal and actual prosthesis control.

          Release date: Export PDF Favorites Scan
        • Thymoma complicated with polymyositis and myasthenia gravis: A case report

          Thymoma complicated with polymyositis and myasthenia gravis is a rare case, which can be clearly diagnosed and given symptomatic treatment according to its own diagnostic criteria, imaging and laboratory examinations. This paper reports the clinical data of a thymoma patient with polymyositis and myasthenia gravis admitted to the Seventh Affiliated Hospital of Sun Yat-Sen University, and discusses the possible pathogenesis and treatment methods.

          Release date:2023-06-13 11:24 Export PDF Favorites Scan
        • Effect of Different Backpack Loads on Physiological Parame Ters in Walking

          This study investigated the effect of prolonged walking with load carriage on body posture, muscle fatigue, heart rate and blood pressure of the tested subjects. Ten healthy volunteers performed 30 min walking trials on treadmill (speed=1.1 m/s) with different backpack loads [0% body weight (BW), 10%BW, 15%BW and 20%BW]. The change of body posture, muscle fatigue, heart rate and blood pressure before and after walking and the recovery of muscle fatigue during the rest time (0, 5, 10 and 15 min) were collected using the Bortec AMT-8 and the NDI Optotrak Certus. Results showed that the forward trunk and head angle, muscle fatigue, heart rate and blood pressure increased with the increasing backpack loads and bearing time. With the 20%BW load, the forward angle, muscle fatigue and systolic pressure were significantly higher than with lighter weights. No significantly increased heart rate and diastolic pressure were found. Decreased muscle fatigue was found after removing the backpack in each load trial. But the recovery of the person with 20%BW load was slower than that of 0%BW,10%BW and 15%BW. These findings indicated that the upper limit of backpack loads for college-aged students should be between 15% BW and 20%BW according to muscle fatigue and forward angle. It is suggested that backpack loads should be restricted to no more than 15%BW for walks of up to 30 min duration to avoid irreversible muscle fatigue.

          Release date: Export PDF Favorites Scan
        • Analysis of muscle synergy and muscle functional network at different walking speeds based on surface electromyographic signal

          An in-depth understanding of the mechanism of lower extremity muscle coordination during walking is the key to improving the efficacy of gait rehabilitation in patients with neuromuscular dysfunction. This paper investigates the effect of changes in walking speed on lower extremity muscle synergy patterns and muscle functional networks. Eight healthy subjects were recruited to perform walking tasks on a treadmill at three different speeds, and the surface electromyographic signals (sEMG) of eight muscles of the right lower limb were collected synchronously. The non-negative matrix factorization (NNMF) method was used to extract muscle synergy patterns, the mutual information (MI) method was used to construct the alpha frequency band (8–13 Hz), beta frequency band (14–30 Hz) and gamma frequency band (31–60 Hz) muscle functional network, and complex network analysis methods were introduced to quantify the differences between different networks. Muscle synergy analysis extracted 5 muscle synergy patterns, and changes in walking speed did not change the number of muscle synergy, but resulted in changes in muscle weights. Muscle network analysis found that at the same speed, high-frequency bands have lower global efficiency and clustering coefficients. As walking speed increased, the strength of connections between local muscles also increased. The results show that there are different muscle synergy patterns and muscle function networks in different walking speeds. This study provides a new perspective for exploring the mechanism of muscle coordination at different walking speeds, and is expected to provide theoretical support for the evaluation of gait function in patients with neuromuscular dysfunction.

          Release date:2023-10-20 04:48 Export PDF Favorites Scan
        • Convolutional neural network human gesture recognition algorithm based on phase portrait of surface electromyography energy kernel

          Surface electromyography (sEMG) is a weak signal which is non-stationary and non-periodic. The sEMG classification methods based on time domain and frequency domain features have low recognition rate and poor stability. Based on the modeling and analysis of sEMG energy kernel, this paper proposes a new method to recognize human gestures utilizing convolutional neural network (CNN) and phase portrait of sEMG energy kernel. Firstly, the matrix counting method is used to process the sEMG energy kernel phase portrait into a grayscale image. Secondly, the grayscale image is preprocessed by moving average method. Finally, CNN is used to recognize sEMG of gestures. Experiments on gesture sEMG signal data set show that the effectiveness of the recognition framework and the recognition method of CNN combined with the energy kernel phase portrait have obvious advantages in recognition accuracy and computational efficiency over the area extraction methods. The algorithm in this paper provides a new feasible method for sEMG signal modeling analysis and real-time identification.

          Release date:2021-10-22 02:07 Export PDF Favorites Scan
        • Targeted muscle reinnervation: a surgical technique of human-machine interface for intelligent prosthesis

          Objective To review targeted muscle reinnervation (TMR) surgery for the construction of intelligent prosthetic human-machine interface, thus providing a new clinical intervention paradigm for the functional reconstruction of residual limbs in amputees. MethodsExtensively consulted relevant literature domestically and abroad and systematically expounded the surgical requirements of intelligent prosthetics, TMR operation plan, target population, prognosis, as well as the development and future of TMR. Results TMR facilitates intuitive control of intelligent prostheses in amputees by reconstructing the “brain-spinal cord-peripheral nerve-skeletal muscle” neurotransmission pathway and increasing the surface electromyographic signals required for pattern recognition. TMR surgery for different purposes is suitable for different target populations. Conclusion TMR surgery has been certified abroad as a transformative technology for improving prosthetic manipulation, and is expected to become a new clinical paradigm for 2 million amputees in China.

          Release date:2023-08-09 01:37 Export PDF Favorites Scan
        • Intermuscular coupling based on wavelet packet-cross frequency coherence

          Human motion control system has a high degree of nonlinear characteristics. Through quantitative evaluation of the nonlinear coupling strength between surface electromyogram (sEMG) signals, we can get the functional state of the muscles related to the movement, and then explore the mechanism of human motion control. In this paper, wavelet packet decomposition and n:m coherence analysis are combined to construct an intermuscular cross-frequency coupling analysis model based on wavelet packet-n:m coherence. In the elbow flexion and extension state with 30% maximum voluntary contraction force (MVC), sEMG signals of 20 healthy adults were collected. Firstly, the subband components were obtained based on wavelet packet decomposition, and then the n:m coherence of subband signals was calculated to analyze the coupling characteristics between muscles. The results show that the linear coupling strength (frequency ratio 1:1) of the cooperative and antagonistic pairs is higher than that of the nonlinear coupling (frequency ratio 1:2, 2:1 and 1:3, 3:1) under the elbow flexion motion of 30% MVC; the coupling strength decreases with the increase of frequency ratio for the intermuscular nonlinear coupling, and there is no significant difference between the frequency ratio n:m and m:n. The intermuscular coupling in beta and gamma bands is mainly reflected in the linear coupling (1:1), nonlinear coupling of low frequency ratio (1:2, 2:1) between synergetic pair and the linear coupling between antagonistic pairs. The results show that the wavelet packet-n:m coherence method can qualitatively describe the nonlinear coupling strength between muscles, which provides a theoretical reference for further revealing the mechanism of human motion control and the rehabilitation evaluation of patients with motor dysfunction.

          Release date:2020-06-28 07:05 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品