The electroencephalogram (EEG) has proved to be a valuable tool in the study of comprehensive conditions whose effects are manifest in the electrical brain activity, and epilepsy is one of such conditions. In the study, multi-scale permutation entropy (MPE) was proposed to describe dynamical characteristics of EEG recordings from epilepsy and healthy subjects, then all the characteristic parameters were forwarded into a support vector machine (SVM) for classification. The classification accuracies of the MPE with SVM were evaluated by a series of experiments. It is indicated that the dynamical characteristics of EEG data with MPE could identify the differences among healthy, inter-ictal and ictal states, and there was a reduction of MPE of EEG from the healthy and inter-ictal state to the ictal state. Experimental results demonstrated that average classification accuracy was 100% by using the MPE as a feature to characterize the healthy and seizure, while 99.58% accuracy was obtained to distinguish the seizure-free and seizure EEG. In addition, the single-scale permutation entropy (PE) at scales 1-5 was put into the SVM for classification at the same time for comparative analysis. The simulation results demonstrated that the proposed method could be a very powerful algorithm for seizure prediction and could have much better performance than the methods based on single scale PE.
Vigilance is defined as the ability to maintain attention for prolonged periods of time. In order to explore the variation of brain vigilance in work process, we designed addition and subtraction experiment with numbers of three digits to induce the vigilance to change, combined it with psychomotor vigilance task (PVT) to measure this process of electroencephalogram (EEG), extracted and analyzed permutation entropy (PE) of 11 cases of subjects' EEG and made a brief comparison with nonlinear parameter sample entropy (SE). The experimental results showed that:PE could well reflect the dynamic changes of EEG when vigilance decreases, and has advantages of fast arithmetic speed, high noise immunity, and low requirements for EEG length. This can be used as a measure of the brain vigilance indicators.
Sleep quality is closely related to human health. It is very important to correctly discriminate the sleep stages for evaluating sleep quality, diagnosing and analyzing the sleep-related disorders. Polysomnography (PSG) signals are commonly used to record and analyze sleep stages. Effective feature extraction and representation is one of the most important steps to improve the performance of sleep stage classification. In this work, a collaborative representation (CR) algorithm was adopted to re-represent the original extracted features from electroencephalogram signal, and then the kernel entropy component analysis (KECA) algorithm was further used to reduce the feature dimension of CR-feature. To evaluate the performance of CR-KECA, we compared the original feature, CR feature and readied CR feature (CR-PCA) after principal component analysis (PCA). The experimental results of sleep stage classification indicated that the CR-KECA method achieved the best performance compared with the original feature, CR feature, and CR-PCA feature with the classification accuracy of 68.74±0.46%, sensitivity of 68.76±0.43% and specificity of 92.19±0.11%. Moreover, CR algorithm had low computational complexity, and the feature dimension after KECA was much smaller, which made CR-KECA algorithm suitable for the analysis of large-scale sleep data.
Electroencephalogram (EEG) analysis has been widely used in disease diagnosis. The EEG detection of the patients with epilepsy can be used to make judgments about patients' conditions in time, which is of great practical value. Therefore, the techniques of automatic detection, diagnosis and classification of epileptic EEG signals are urgently needed. In order to realize fast and accurate automatic detection and classification of the EEG signals during the normal, interictal and ictal periods of epilepsy, we propose an automatic classification and recognition method which combines the Real Adaboost algorithm based on error-correcting output codes (ECOC) with a feature extraction method based on sample entropy (SampEn) and wavelet packet energy in this paper. In the present study, we used the sample entropy of input signals and the energy of some parts of frequency bands as features, and then we classified the extracted features with the method combining ECOC with Real AdaBoost algorithm. In order to test the validity, we used the epilepsy database from the University of Bonn. The database has 5 groups of EEG signals, which contains the data of normal people with their eyes open or closed, the data collected inside and outside of the epileptic foci from patients during their interictal period and the data from patients during their ictal period. The results showed that the method had strong abilities of classification and recognition of the EEG signals, and especially the recognition rate had been improved significantly. The average recognition rate of the EEG signals with different features during the three periods of the five groups mentioned above can reach 96.78%, which is superior to those with algorithms recorded in many other literatures. The method has better stability, processing speed and potential of real-time application, and it plays a supporting role in the prediction and detection of epilepsy in clinical practice.
The result of the emotional state induced by music may provide theoretical support and help for assisted music therapy. The key to assessing the state of emotion is feature extraction of the emotional electroencephalogram (EEG). In this paper, we study the performance optimization of the feature extraction algorithm. A public multimodal database for emotion analysis using physiological signals (DEAP) proposed by Koelstra et al. was applied. Eight kinds of positive and negative emotions were extracted from the dataset, representing the data of fourteen channels from the different regions of brain. Based on wavelet transform, δ, θ, α and β rhythms were extracted. This paper analyzed and compared the performances of three kinds of EEG features for emotion classification, namely wavelet features (wavelet coefficients energy and wavelet entropy), approximate entropy and Hurst exponent. On this basis, an EEG feature fusion algorithm based on principal component analysis (PCA) was proposed. The principal component with a cumulative contribution rate more than 85% was retained, and the parameters which greatly varied in characteristic root were selected. The support vector machine was used to assess the state of emotion. The results showed that the average accuracy rates of emotional classification with wavelet features, approximate entropy and Hurst exponent were respectively 73.15%, 50.00% and 45.54%. By combining these three methods, the features fused with PCA possessed an accuracy of about 85%. The obtained classification accuracy by using the proposed fusion algorithm based on PCA was improved at least 12% than that by using single feature, providing assistance for emotional EEG feature extraction and music therapy.
It is very important for epilepsy treatment to distinguish epileptic seizure and non-seizure. In this study, an automatic seizure detection algorithm based on dual density dual tree complex wavelet transform (DD-DT CWT) for intracranial electroencephalogram (iEEG) was proposed. The experimental data were collected from 15 719 competition data set up by the National Institutes of Health (NINDS) in Kaggle. The processed database consisted of 55 023 seizure epochs and 501 990 non-seizure epochs. Each epoch was 1 second long and contained 174 sampling points. Firstly, the signal was resampled. Then, DD-DT CWT was used for EEG signal processing. Four kinds of features include wavelet entropy, variance, energy and mean value were extracted from the signal. Finally, these features were sent to least squares-support vector machine (LS-SVM) for learning and classification. The appropriate decomposition level was selected by comparing the experimental results under different wavelet decomposition levels. The experimental results showed that the features selected in this paper were different between seizure and non-seizure. Among the eight patients, the average accuracy of three-level decomposition classification was 91.98%, the sensitivity was 90.15%, and the specificity was 93.81%. The work of this paper shows that our algorithm has excellent performance in the two classification of EEG signals of epileptic patients, and can detect the seizure period automatically and efficiently.
ObjectiveTo compare and analyze the electroencephalographic (EEG) characteristics of infants with infantile epileptic spasms syndrome (IESS) and healthy infants during sleep using power spectral density (PSD) analysis. MethodsInfants aged 5 to 9 months with IESS were included, along with an equal number of age-matched healthy controls. EEG signals during sleep were recorded using the Nihon Kohden EEG-1200C system. The energy distribution in the theta (θ), alpha (α), sigma (σ), and beta (β) frequency bands, as well as the morphology and values of PSD within the 4 ~ 30 Hz range, were analyzed. Additionally, spectral entropy (SpEn) was calculated to evaluate signal complexity. Results A total of 10 IESS patients and 10 healthy infants were included. There were no significant differences in gender or age between the two groups (P=0.64, P=0.88). In both groups, PSD values showed a linear decreasing trend with increasing frequency. However, the IESS group showed notable differences in PSD morphology, amplitude, and energy distribution compared to controls. These included the absence of a σ-band peak, greater PSD dispersion across electrodes, significant alterations in energy distribution across θ, α, σ, and β bands, and significantly higher PSD values in the 4 ~ 30 Hz range (P<0.000 1). SpEn analysis revealed significantly elevated spectral entropy across the sigma band in the IESS group, indicating a lack of dominant frequencies, increased complexity, reduced rhythmicity, and enhanced disorder. In contrast, healthy controls exhibited elevated SpEn in the alpha band, reflecting the physiological reduction or disappearance of dominant alpha rhythms during sleep. Conclusion Infants with IESS demonstrate distinct EEG characteristics in both PSD and SpEn analyses compared to healthy infants. These quantitative spectral features reflect the underlying abnormalities of EEG in IESS and provide objective insights that complement conventional visual assessment, offering a novel perspective for early diagnosis and therapeutic monitoring.
Sub-threshold depression refers to a psychological sub-health state that fails to meet the diagnostic criteria for depression. Appropriate intervention can improve the state and reduce the risks of disease development. In this paper, we focus on music neurofeedback stimulation improving emotional state of sub-threshold depression college students.Twenty-four college students with sub-threshold depression participated in the experiment, 16 of whom were members of the experimental group. Decompression music based on spectrum classification was applied to 16 experimental group participants for 10 min/d music neural feedback stimulation with a period of 14 days, and no stimulation was applied to 8 control group participants. Three feature parameters of electroencephalogram (EEG) relative power, sample entropy and complexity were extracted for analysis. The results showed that the relative power of α、β and θ rhythm increased, while δ rhythm decreased after the stimulation of musical nerofeedback in the experimental group. The sample entropy and complexity were significantly increased after the stimulation, and the differences of these parameters pre and post stimulation were statistically significant (P < 0.05), while the differences of all feature parameters in the control group were not statistically significant. In the experimental group, the scores of self-rating depression scale(SDS) decreased after the stimulation of musical nerofeedback, indicating that the depression was improved. The result of this study showed that music neurofeedback stimulation can improve sub-threshold depression and may provides an effective new way for college students to self-regulation of emotion.
This paper explores a methodology used to discriminate the electroencephalograph (EEG) signals of patients with vegetative state (VS) and those with minimally conscious state (MCS). The model was derived from the EEG data of 33 patients in a calling name stimulation paradigm. The preprocessing algorithm was applied to remove the noises in the EEG data. Two types of features including sample entropy and multiscale entropy were chosen. Multiple kernel support vector machine was investigated to perform the training and classification. The experimental results showed that the alpha rhythm features of EEG signals in severe disorders of consciousness were significant. We achieved the average classification accuracy of 88.24%. It was concluded that the proposed method for the EEG signal classification for VS and MCS patients was effective. The approach in this study may eventually lead to a reliable tool for identifying severe disorder states of consciousness quantitatively. It would also provide the auxiliary basis of clinical assessment for the consciousness disorder degree.
Traditional sample entropy fails to quantify inherent long-range dependencies among real data. Multiscale sample entropy (MSE) can detect intrinsic correlations in data, but it is usually used in univariate data. To generalize this method for multichannel data, we introduced multivariate multiscale entropy into multiscale signals as a reflection of the nonlinear dynamic correlation. But traditional multivariate multiscale entropy has a large quantity of computation and costs a large period of time and space for more channel system, so that it can not reflect the correlation between variables timely and accurately. In this paper, therefore, an improved multivariate multiscale entropy embeds on all variables at the same time, instead of embedding on a single variable as in the traditional methods, to solve the memory overflow while the number of channels rise, and it is more suitable for the actual multivariate signal analysis. The method was tested in simulation data and Bonn epilepsy dataset. The simulation results showed that the proposed method had a good performance to distinguish correlation data. Bonn epilepsy dataset experiment also showed that the method had a better classification accuracy among the five data set, especially with an accuracy of 100% for data collection of Z and S.