1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "gelatin" 27 results
        • REPAIR OF ARTICULAR CARTILAGE DEFECTS WITH “TWOPHASE” TISSUE ENGINEERED CARTILAGE CONSTRUCTED BY AUTOLOGOUS MARROW MESENCHYMAL STEM CELLS AND “TWOPHASE” ALLOGENEIC BONE MATRIX GELATIN

          Objective To investigate the effect of “two-phase” tissue engineered cartilage constructed by autologous marrow mesenchymal stem cells(MSCs) and allogeneic bone matrix gelatin(BMG) in repairing articular cartilage defects. Methods Thirty-twoNew Zealand white rabbits were involved in the experiment. “Two-phase” allogeneic BMG scaffold (one side of porous cancellous bone and the other side of cortical bone; 3 mm both in diameter and in thickness) was prepared from iliac bone and limb bone of 5 rabbits by sequentially chemical method. The MSCs wereseparated from 18 New Zealand white rabbits and induced to express chondrocyticphenotype. The chondrocyte precursor cells were seeded onto “two-phase” allogeneic BMG to construct tissue engineering cartilage. Masson’s trichrome staining, PAS staining and scanning electronic microscopic observation were carried out at 1, 3 and 5 weeks. The defects of full thickness articular cartilage(3 mm both in diameter and in depth) were made at both sides of femoral medial condyles in 27 rabbits(including 18 of separated MSCs and the remaining 9). The defects were repaired with the tissue engineered cartilage at the right side (group A, n=18), with BMG at the left side(group B, n=18), and without any implant at both sides in the remaining 9 rabbits as a control( group C, n=18). After 1, 3 and6 months, the 6 specimens of femoral condyles were harvested in 3 groups, respectively. Gross observation, Masson’s trichrome and Alcian blue staining, modified Wakitani scoring and in situ hybridization of collagen type Ⅱ were carried out to assess the repair efficacy of tissue engineered cartilage. Results The “two-phase” BMG consisted of the dense cortical part and the loose cancellous part. In cancellous part, the pore size ranged 100-800 μm, in which the chondrocyte precursor cells being induced from MSCs proliferated and formed the cell-rich cartilaginous part of tissue engineered cartilage. In cortical part, the pore size ranged 10-40 μm, on which the cells arranged in a layer and formed the hard part of subchondral bone. After 1 month of transplantation, the cartilage and subchondral bone were regenerated in group A; during observation, the regenerated cartilage graduallythinned, but defect was repaired and the structure of the articular surface ansubchondral bone was in integrity. In groups B and C, defects were not repaired, the surrounding cartilage of defect was abrased. According to the modified Wakitani scoring, the indexes in group A were significantly higher than those in group B and C(Plt;0.01) except the thickness of cartilage at 6 months. The positive cell rate of in situ hybridization for collagen type Ⅱ in group A was also higher than those in groups B and C(Plt;0.01). Conclusion “Two-phase” allogeneic BMG is a prospective scaffold for tissue engineered cartilage,which combines with autologous chondrocyte precursor cells induced from MSCs toconstruct the tissue engineering cartilage. The tissue engineered cartilage can repair defects of articular cartilage and subchondral bone.

          Release date:2016-09-01 09:30 Export PDF Favorites Scan
        • STUDY ON CHITOSAN-GELATIN/HYDROXYAPATITE COMPOSITE SCAFFOLDS--PREPARATION AND MORPHOLOGY

          OBJECTIVE: To prepare chitosan-gelatin/hydroxyapatite (CS-Gel/HA) composite scaffolds, and to investigate the influence of components and preparing conditions to their micromorphology. METHODS: The CS-Gel/HA composite scaffolds were prepared by phase-separation method. Micromorphology and porosity were detected by using scanning electron microscope and liquid displacement method respectively. RESULTS: Porous CS-Gel/HA composite scaffolds could be prepared by phase-separation method, and their density and porosity could be controlled by adjusting components and quenching temperature. CONCLUSION: The study suggests the feasibility of using CS-Gel/HA composite scaffolds for the transplantation of autogenous osteoblasts to regenerate bone tissue.

          Release date:2016-09-01 10:21 Export PDF Favorites Scan
        • Reserch progress on novel prognostic predictors of acute renal injure in intensive care unit

          Although the recent studies have concerned the pathogenesis and therapeutic strategies of acute kidney injury (AKI), the mortality of AKI is still terribly high, and it is still one of the most important death factors in the intensive care unit. There is no doubt that early verdict of AKI, is good for a more aggressive treatment and can promise an improved prognosis for AKI patients. Serum creatinine level, serving as the gold standard for diagnosis of kidney injury, cannot meet current clinical work in its sensitivity and specificity of diagnosis of early AKI. Over the past decades, researchers worked to find and verify novel AKI biomarkers, including neutrophil gelatinase associated lipocalin, interleukin-18, kidney injury molecule-1 and cystatin-C, which were proved to be the potential reliable predictor of AKI development and prognosis, and were of great importance to the early diagnosis and clinical monitoring of AKI. This paper reviews the main studies on these novel prognostic predictors of AKI over the decades and evaluates their roles and limitations in early diagnosis and clinical prognosis prediction.

          Release date:2018-07-27 09:54 Export PDF Favorites Scan
        • BONE INDUCTIVE EFFECTS OF rhBMP-2 LOADED POROUS CPC IMPLANTS ON SPINE FUSION IN RABBITS

          Objective To investigate the effect of rhBMP-2 combined with porous CPC on spine fusion in rabbits. Methods rhBMP-2 (1 mg) was loaded with 1 g CPC and 6.0 cm × 2.0 cm × 0.5 cm absorbable gelatin sponge (AGS), respectively, and thereafter frozen to prepare the biomaterial of rhBMP-2/CPC and rhBMP-2/AGS. Forty-five 24-week-old New Zealand rabbits (weight 2.5-3.5 kg) were randomly divided into 3 groups: group A (n=17), group B (n=11) and group C (n=17).With the exposure and removal of L5, 6 transverse process’s posterior bone cortex in all the rabbits, the corresponding cancellous bones were exposed and the posterior bilateral intertransverse bone grafting of L5, 6 were performed on the three groups, then the rhBMP-2/CPC, rhBMP-2/AGS and CPC was implanted into the rabbits of group A, B and C, respectively. Gross observation, histology assay and image examination were conducted 4, 8 and 24 weeks after operation. Results Decalcified hard tissue section demonstrated obvious callus connections in group A, small pieces of callus in group B, and fibrous connection and few cartilage in group C at 4 and 8 weeks after operation. By Kacena measurement standard, the score of group A, B and C at 4 weeks after operation was (7.30 ± 0.76), (3.68 ± 1.60) and (1.75 ± 0.54) points, respectively, and their score at 8 weeks after operation were (8.32 ± 1.11), (3.75 ± 1.23) and (1.47 ± 0.23) points, respectively, indicating there were significant differences between group A and group B as well as between group A and group C at different time points (P lt; 0.05). Undecalcified hard tissue section demonstrated that there was cancellous bone-l ike tissue regeneration in group A, and fiber connection around the implants and l ittle ossification in group C at 4 and 8 weeks after operation. By three dimensions reconstructed CT, group A, B and C scored (2.50 ± 0.57), (1.00 ± 0.00) and (1.00 ± 0.00) points respectively, indicating there was a significant difference between group C and groups A and B as well as between group A and group B (P lt; 0.05). Conclusion As a carrier of rhBMP-2, the CPC is capable of promoting spine bone fusion in rabbits and is a new type of artificial bone repair material.

          Release date:2016-09-01 09:05 Export PDF Favorites Scan
        • Preparation and bone repair capability of a new plastic bone filler material

          Objective To prepare a new plastic bone filler material with adhesive carrier and matrix particles derived from human bone, and evaluate its safety and osteoinductive ability through animal tests. MethodsThe human long bones donated voluntarily were prepared into decalcified bone matrix (DBM) by crushing, cleaning, and demineralization, and then the DBM was prepared into bone matrix gelatin (BMG) by warm bath method, and the BMG and DBM were mixed to prepare the experimental group’s plastic bone filler material; DBM was used as control group. Fifteen healthy male thymus-free nude mice aged 6-9 weeks were used to prepare intermuscular space between gluteus medius and gluteus maximus muscles, and all of them were implanted with experimental group materials. The animals were sacrificed at 1, 4, and 6 weeks after operation, and the ectopic osteogenic effect was evaluated by HE staining. Eight 9-month-old Japanese large-ear rabbits were selected to prepare 6-mm-diameter defects at the condyles of both hind legs, and the left and right sides were filled with the materials of the experimental group and the control group respectively. The animals were sacrificed at 12 and 26 weeks after operation, and the effect of bone defect repair were evaluated by Micro-CT and HE staining. Results In ectopic osteogenesis experiment, HE staining showed that a large number of chondrocytes could be observed at 1 week after operation, and obvious newly formed cartilage tissue could be observed at 4 and 6 weeks after operation. For the rabbit condyle bone filling experiment, HE staining showed that at 12 weeks after operation, part of the materials were absorbed, and new cartilage could be observed in both experimental and control groups; at 26 weeks after operation, the most of the materials were absorbed, and large amount of new bone could be observed in the 2 groups, while new bone unit structure could be observed in the experimental group. Micro-CT observation showed that the bone formation rate and area of the experimental group were better than those of the control group. The measurement of bone morphometric parameters showed that the parameters at 26 weeks after operation in both groups were significantly higher than those at 12 weeks after operation (P<0.05). At 12 weeks after operation, the bone mineral density and bone volume fraction in the experimental group were significantly higher than those in the control group (P<0.05), and there was no significant difference between the two groups in trabecular thickness (P>0.05). At 26 weeks after operation, the bone mineral density of the experimental group was significantly higher than that of the control group (P<0.05). There was no significant difference in bone volume fraction and trabecular thickness between the two groups (P>0.05). Conclusion The new plastic bone filler material is an excellent bone filler material with good biosafety and osteoinductive activity.

          Release date:2023-03-13 08:33 Export PDF Favorites Scan
        • FABRICATION OF POROUS POLY LACTIC ACID-BONE MATRIX GELATIN COMPOSITEBIOACTIVE MATERIAL AND ITS OSTEOINDUCTIVE ACTIVITY

          Objective To fabricate a novel porous bioactivecomposite biomaterial consisting of poly lactic acid (PLA)bone matrix gelatin(BMG) by using the supercritical carbon dioxide fluid technique (SC-CO2) and to evaluate its osteoinductive activity. Methods The cortical bones selected from healthy adult donors were processed into BMG by the defatting, demineralizing, and deproteinizing processes. PLA and BMG were mixed at a volume radio of 3∶1; then, the PLA-BMG mixed material and the pure PLA material were respectively placed in the supercritical carbon dioxide reaction kettles, and were respectively added by the NaCl particles 100200 μm in diameter for theporosity of the materials so that the porous PLA-BMG composite material and the porous PLA composite material could be formed. The mouse osteoblastlike MC3T3-E1 cells were cultured in the dulbecco’s modified eagle medium (DMEM) supplemented with 10% fetal bovine serum. Then, 20 μl of the MC3T3E1 cell suspensions containing 2 ×106 cells /ml were delivered into the culturing plate (24 wells/plate) made of the different materials, which were co-cultured for 2 weeks. In the PLA-BMG group, 100 μg of the crushed PLA-BMG material was contained in each well; in the PLA group, 100 μg of the crushed PLA material was containedin each well; and in the DMEM group, only DMEM was contained, which served as the control group. There were 6 wells in each group. The quantitative analysis onthe calcification area was performed by the staining of the alizarin red S. Theco-cultured cells were harvested and lysated in 1 ml of 0.2% Nonidet P-40 by the ultrasonic lysating technique. Then, the ALP activity and the Ca content were measured according to the illuminations of the reagent kits. Results The porous PLABMG composite material showed a good homological porosity with a pore diameter of 50-150 μm and a good connectivity between the pores. The ALP activity, the Ca content, and the calcification area were significantly greater in the PLABMG group than in the PLA group and the control group (325.59±70.40 U/gprot, 3.51±1.64 mmol/gprot, 42.98±4.44% vs. 63.62±30.01 U/gprot, 1.04±0.21 mmol/gprot, 9.55±1.94%, and 2.40±1.47 U/gprot, 0.70±0.24 mmol/gprot, 0.86±0.41%; Plt;0.05). Meanwhile, there was a statistically significant difference between the PLA group and the control group in the ALP activity and the calcification area (Plt;0.05). Conclusion The porous PLABMG composite material prepared by the use of SC-CO2 has a good steoinductive activity and can be used as a promising bone biomaterial and a bone tissue engineered scaffold.

          Release date:2016-09-01 09:22 Export PDF Favorites Scan
        • THE EXPERIMENTAL STUDY OF REPAIRING BONE DEFECTS WITH ALLOGENEIC BONE MATRIX GELATIN AND PLASTER

          OBJECTIVE To study the function of the composite of bone matrix gelatin(BMG) and plaster in the repairing process of bone defects. METHODS Sixteen New Zealand rabbits which were defected in corpus radii were made as implant zone of bone. Sixteen sides of radii were implanted with the composite of BMG and plaster as experimental group. Others were implanted with BMG(8 sides) and bone stored in alcohol(8 sides) as control groups. The repairing process in bone defects were observed by X-ray and histological examination. RESULTS There was an obvious osteogenesis in experimental group. The defects of radii were almost healed at 12th week after operation. There were osteogenesis in both control groups, but the repairing process was slower than that of the experimental group. CONCLUSION The composite of BMG and plaster is a good material for bone transplantation.

          Release date:2016-09-01 11:05 Export PDF Favorites Scan
        • Research of diclofenac sodium-loaded gelatin scaffold with anti-inflammatory activity for promoting in vivo cartilage regeneration

          Objective To develop a diclofenac sodium-loaded gelatin scaffold with anti-inflammatory activity and provide a new avenue for alleviating the inflammatory response and enhancing cartilage regeneration in vivo. Methods Diclofenac sodium was homogeneously mixed with gelatin to prepare a diclofenac sodium-loaded porous gelatin scaffold by freeze-drying method as the experimental group, and a pristine porous gelatin scaffold was served as a control group. The general morphology of the scaffold was observed, the pore size of the scaffold was measured by scanning electron microscopy, the porosity of the scaffold was calculated by drainage method, the loading of diclofenac sodium into the gelatin scaffold was detected by fourier transform infrared spectrometer and X-ray diffraction examinations, and the release kinetics of diclofenac sodium from gelatin scaffold was tested using an in vitro release assay. The two scaffolds were co-cultured with lipopolysaccharide-predisposed RAW264.7 in vitro, and the expressions of interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were detected by reverse transcription polymerase chain reaction (RT-PCR), enzyme-linked immuno sorbent assay, and Western blot, to detect the in vitro anti-inflammatory effect of the drug-loaded scaffold. Thereafter, the second generation chondrocytes of New Zealand white rabbits were inoculated on the two groups of scaffolds for in vitro culture, and the cytocompatibility of the scaffold was tested by live/dead staining and cell counting kit 8 assay, the feasibility of in vitro cartilage regeneration of the scaffold was evaluated via gross observation, HE staining, Safranin-O staining, and immunohistochemical collagen type Ⅱ staining, as well as biochemical quantitative analyses. Finally, the two groups of chondrocyte-scaffolds were implanted subcutaneously into New Zealand white rabbits, and after 4 weeks, the general observation, HE staining, safranin O staining, immunohistochemical collagen type Ⅱ staining, and biochemical quantitative analyses were performed to verify the cartilage regeneration in vivo, and the expression of inflammation-related genes CD3 and CD68 was detected by RT-PCR to comprehensively evaluate the anti-inflammatory performance of the scaffolds in vivo. Results The two scaffolds exhibited similar gross, microporous structure, pore size, and porosity, showing no significant difference (P>0.05). Diclofenac sodium was successfully loaded into gelatin scaffold. Data from in vitro anti-inflammatory assay suggested that diclofenac sodium-loaded gelatin scaffold showed alleviated gene and protein expressions of IL-1β and TNF-α when compared with gelatin scaffold (P<0.05). The evaluation of cartilage regeneration in vitro showed that the number of living cells increased significantly with the extension of culture time, and there was no significant difference between the two groups at each time point (P>0.05). White cartilage-like tissue was regenerated from the scaffolds in both groups, histological observation showed typical cartilage lacuna structure and specific cartilage extracellular matrix secretion. There was no significant difference in the content of cartilage-specific glycosaminoglycan (GAG) and collagen type Ⅱ between the two groups (P>0.05). In vivo experiments showed that the samples in the experimental group had porcelain white cartilage like morphology, histologic staining showed obvious cartilage lacuna structure and cartilage specific extracellular matrix, the contents of GAG and collagen type Ⅱ were significantly higher than those in the control group, and the protein and mRNA expressions of CD3 and CD68 were significantly lower than those in the control group, with significant differences (P<0.05). ConclusionThe diclofenac sodium-loaded gelatin scaffold presents suitable pore size, porosity, and cytocompatibility, as well as exhibited satisfactory anti-inflammatory ability, providing a reliable scheme for alleviating the inflammatory reaction of regenerated cartilage tissue after in vivo implantation and promoting cartilage regeneration in vivo.

          Release date:2023-02-13 09:57 Export PDF Favorites Scan
        • Experiment of porous calcium phosphate/bone matrix gelatin composite cement for repairing lumbar vertebral bone defect in rabbit

          Objective To investigate the effect of a porous calcium phosphate/bone matrix gelatin (BMG) composite cement (hereinafter referred to as the " porous composite cement”) for repairing lumbar vertebral bone defect in a rabbit model. Methods BMG was extracted from adult New Zealand rabbits according to the Urist’s method. Poly (lactic-co-glycolic) acid (PLGA) microsphere was prepared by W/O/W double emulsion method. The porous composite cement was developed by using calcium phosphate cement (CPC) composited with BMG and PLGA microsphere. The physicochemical characterizations of the porous composite cement were assessed by anti-washout property, porosity, and biomechanical experiment, also compared with the CPC. Thirty 2-month-old New Zealand rabbits were used to construct vertebral bone defect at L3 in size of 4 mm×3 mm×3 mm. Then, the bone defect was repaired with porous composite cement (experimental group, n=15) or CPC (control group, n=15). At 4, 8, and 12 weeks after implantation, each bone specimen was assessed by X-ray films for bone fusion, micro-CT for bone mineral density (BMD), bone volume fraction (BVF), trabecular thickness (Tb. Th.), trabecular number (Tb.N.), and trabecular spacing (Tb. Sp.), and histological section with toluidine blue staining for new-born bone formation. Results The study demonstrated well anti-washout property in 2 groups. The porous composite cement has 55.06%±1.18% of porosity and (51.63±6.73) MPa of compressive strength. The CPC has 49.38%±1.75% of porosity and (63.34±3.27) MPa of compressive strength. There were significant differences in porosity and compressive strength between different cements (t=4.254, P=0.006; t=2.476, P=0.034). X-ray films revealed that the zone between the cement and host bone gradually blurred with the time extending. At 12 weeks after implantation, the zone was disappeared in the experimental group, but clear in the control group. There were significant differences in BMD, BVF, Tb. Th., Tb. N., and Tb. Sp. between 2 groups at each time point (P<0.05). Histological observation revealed that there was new-born bone in the cement with the time extending in 2 groups. Among them, bony connection was observed between the new-born bone and the host in the experimental group, which was prior to the control group. Conclusion The porous composite cement has dual bioactivity of osteoinductivity and osteoconductivity, which are effective to promote bone defect healing and reconstruction.

          Release date:2017-12-11 12:15 Export PDF Favorites Scan
        • THE EFFECT OF CEFAZOLIN LOADED BONE MATRIX GELATIN ON REPAIRING LARGE SEGMENTAL BONE DEFECTS AND PREVENTING INFECTION AFTER OPERATION

          OBJECTIVE: To explore the possibility of repair long segmental bone defects and preventing infection with cefazolin loaded bone matrix gelatin (C-BMG). METHODS: C-BMG was made from putting cefazolin into BMG by vacuum adsorption and freeze-drying techniques. The sustaining period of effective drug concentration in vitro and in vivo was detected by inhabition bacteria, and the drug concentration in local tissues (bone and muscle) and plasma after implantation of C-BMG was examined by high performance liquid chromatography(HPLC). RESULTS: The effective inhibition time to staphylococcus aureus of C-BMG was 22 days in vitro, while 14 days in vivo. The drug concentration in local tissues(bone and muscle) were higher than that of plasma, and the drug concentration in local tissues was higher in early stage, later it kept stable low drug release. It suggested that C-BMG had excellent ability to repair segmental long bone defects. CONCLUSION: C-BMG can gradually release cefazolin with effective drug concentration and has excellent ability to repair segmental long bone defects. It may be a novel method to repair segmental long bone defects and prevent infection after the operation.

          Release date:2016-09-01 10:26 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品