ObjectiveTo explore the differential expressed lncRNA genes associated with formation of cholesterol gallstone, and analyze the biological functions of differential expressed lncRNA through bioinformatics.MethodsA total of 24 C57BL/6 mice were randomly divided into normal control group (n=8) and lithogenic group (n=16), which were treated with chow diets and lithogenic diets respectively for 5 weeks. After 5 weeks, mice of the lithogenic group were randomly divided into model control group (n=8) and ursodeoxycholic acid treatment group (n=8). Afterwards, mice of the normal control group were still fed with chow diets, mice of the model control group were fed with lithogenic diets, mice of the ursodeoxycholic acid treatment group were fed with ursodeoxycholic acid. After 2 weeks, collected liver tissues and gallbladder bile from the three groups, and observed gallbladder gross sample and analyzed lipids component of gallbladder bile, meanwhile detected the differential expressed lncRNA and analyzed the biological functions of differential expressed lncRNA through bioinformatics, including Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis.ResultsWe successfully constructed the mice model of cholesterol gallstone. Total cholesterol level of gallbladder in the model control group had significantly higher than those of the normal control group and ursodeoxycholic acid treatment group (P<0.05), yet there was no significant difference between the normal control group and ursodeoxycholic acid treatment group (P=0.59). The levels of total bile acid, total bilirubin, and direct bilirubin had no significant difference among the three groups (P>0.05). There were 49 kinds of common overlapped difference lncRNA between the ursodeoxycholic acid treatment group and the model control group through differential expression analysis of lncRNA in liver tissues of the mice in three groups. GO and KEGG path analysis were performed separately by differential expressed lncRNA, and 88 kinds of GO terms and 18 kinds of pathways were significantly enriched from the model control group and the normal control group, 205 kinds of GO terms and 20 kinds of pathways were significantly enriched from the ursodeoxycholic acid treatment group and the normal control group.ConclusionsUrsodeoxycholic acid has therapeutic effect for cholesterol gallstone. Differential expressed lncRNAs play an important regulatory role in the formation of cholesterol gallstone and the prevention of gallstone formation by ursodeoxycholic acid treatment, which further lay the foundation in discussing specific mechanism regulated by lncRNA.
ObjectiveTo summarize the research progress of long non-coding RNA (lncRNA) in the regulation of malignant biological behavior of gallbladder cancer so as to provide references for its related research.MethodThe relevant literatures about studies of lncRNA in gallbladder cancer in recent years were reviewed.ResultsThe recent studies had shown that 19 lncRNAs associated with gallbladder cancer had played the important roles in regulating tumor cell proliferation, migration, invasion, apoptosis, “sponge” miRNAs, chemoresistance, and tumor metastasis. Among them, most lncRNAs tended to have carcinogenic properties, only a few had anticarcinogenic effect. Although the research suggested the mechanism and role of lncRNA to promote or inhibit the occurrence and development of gallbladder cancer, the current research on its mechanism was still limited. In addition, some lncRNAs were found to be specifically expressed in the serum of patients with gallbladder cancer, so which were expected to become biomarkers for tumor diagnosis and prognosis.ConclusionslncRNAs associated with gallbladder cancer have carcinogenic or anticarcinogenic effect, or chemoresistance. They play potential roles in diagnosis, prognosis, and (or) treatment of tumors, but molecular mechanisms of their effects are still limited.
ObjectiveTo summarize the latest research of long non-coding RNA (lncRNA) as competitive endogenous RNA (ceRNA) and its targeting technology in pancreatic cancer, so as to provide new ideas for lncRNA targeted intervention or as an early diagnostic marker of pancreatic cancer. MethodThe domestic and foreign literature on researches of lncRNA as ceRNA and its targeting technology in the pancreatic cancer was searched and reviewed. ResultsAt present, the growing number of evidences showed that in pathological states such as tumors, the abundance of intracellular lncRNAs was sufficient to trigger ceRNA crosstalk. The lncRNA played a role like “sponge” through the complementary binding of incomplete base of miRNA with miRNA response elements, then adsorbed miRNA, and thus changed the activity and effectiveness of miRNA. It also regulated the expression of downstream target genes. Moreover, a large number of studies had identified that the lncRNA-mediated ceRNA regulatory network, namely lncRNA/miRNA/mRNA axis, played a role in promoting or inhibiting the occurrence and progression of pancreatic cancer through a variety of cellular functions. In addition, many technologies targeting lncRNA, such as small interfering RNA, antisense oligonucleotides, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9, and small molecule inhibitors, etc. had been widely studied and acquired important results in preclinical research. ConclusionsThe ceRNA hypothesis is a functional complex composed by non-coding RNAs and mRNAs with non-coding properties, forming a ceRNA network of multi-level and cross-regulatory on the transcriptome. Epigenetic modification and key post-transcriptional regulation of lncRNA have been achieved through ceRNA network mechanism, which has become a successful paradigm for exploring the function of lncRNA. The tumor suppressive and promoting effects and mechanisms of many lncRNAs in the occurrence and development of pancreatic cancer are explored in many studies. Moreover, the continuous progress of targeted lncRNA technology provides conditions for study of lncRNA. LncRNA has a potential to be used as a biomarker for precancerous diagnosis and prognosis of pancreatic cancer.
ObjectiveTo summarize the recent advances in the relationship between long non-coding RNA (LncRNA) and tumor autophagy, autophagy and drug resistance regulation.MethodsReviewed the relevant literatures at home and abroad, and reviewed the recent research progress of LncRNA regulation of autophagy to affect tumor resistance.ResultsDrug resistance was a common problem in the process of anti-tumor therapy. Autophagy played an important role in the process of tumor resistance as an important mechanism to maintain cell homeostasis. Abnormal regulation of LncRNA could contribute to the occurrence and development of tumors, and could also mediate the resistance of tumor cells to anti-tumor drugs by promoting or inhibiting autophagy.ConclusionsLncRNA can mediate tumor autophagy in a positive or negative direction, and autophagy is a " double-edged sword” for tumor resistance. LncRNA may improve tumor resistance to drugs by regulating autophagy.
ObjectiveTo summarize research progress of non-coding RNAs (ncRNAs) in acute pancreatitis (AP), so as to provide new ideas for pathogenesis, diagnosis, and therapy of AP.MethodThe literatures on studies of ncRNAs in AP in recent years were read and reviewed.ResultsThe incidence of AP was currently increasing, but its etiology was diverse, and its pathogenesis was still fully unclear. In recent years, a large number of studies had confirmed that the ncRNA played an important role in the occurrence of many cellulars and diseases processes. Through continuous exploration for potential mechanisms of AP based on ncRNA (including long non-coding RNA and microRNA) function, it was found that the specificity and sensitivity of ncRNAs in the diagnosis of AP were better than of the traditional biomarkers. Meanwhile, ncRNAs were involved in the regulation of inflammatory response through a variety of ways.ConclusionsncRNAs are involved in altering gene expression (including up-regulation or down-regulation) in the key physiological functions of AP through a variety of ways, it might provide new ideas for understanding pathogenesis of AP and help to find new therapeutic targets. A variety of ncRNAs closely related to AP are expected to become biomarkers and molecular targets for early diagnosis and treatment of AP, so as to achieve early diagnosis and targeted treatment of AP.
ObjectiveTo summarize the regulatory effect of long non-coding RNA (lncRNA) on osteoarthritis (OA) cartilage injury.MethodsThe molecular functions and mechanisms of lncRNA were introduced and its regulatory effects on the pathological processes of OA were elaborated by referring to the relevant literature at domestic and abroad in recent years.ResultsThe pathological characteristics of OA are degeneration of articular cartilage and inflammation of synovial tissue, but its etiology and pathological mechanism have not been clarified. lncRNA is a kind of heterogeneous non-coding RNA, which plays a regulatory role in many inflammation-related diseases and exerts a wide range of biological functions. lncRNA is a regulator involved in the pathogenesis of OA, and is abnormally expressed in OA cartilage, leading to the degeneration of the extracellular matrix of cartilage.ConclusionAt present, there have been preliminary studies on the pathological effects of lncRNA in regulating OA and the biological functions of chondrocytes. However, the pathogenesis of lncRNA and its regulatory network in OA and the way in which it regulates inflammatory pathways are still unclear, and further exploration is needed.
ObjectiveTo summarize the regulatory role of long non-coding RNA (lncRNA) in peripheral nerve injury (PNI) and neural regeneration.MethodsThe characteristics and mechanisms of lncRNA were summarized and its regulatory role in PNI and neural regeneration were elaborated by referring to relevant domestic and foreign literature in recent years.ResultsNeuropathic pain and denervated muscle atrophy are common complications of PNI, affecting patients’ quality of life. Numerous lncRNAs are upregulated after PNI, which promote the progress of neuropathic pain by regulating nerve excitability and neuroinflammation. Several lncRNAs are found to promote the progress of denervated muscle atrophy. Importantly, peripheral nerve regeneration occurs after PNI. LncRNAs promote peripheral nerve regeneration through promoting neuronal axonal outgrowth and the proliferation and migration of Schwann cells.ConclusionAt present, the research on lncRNA regulating PNI and neural regeneration is still in its infancy. The specific mechanism remains to be further explored. How to achieve clinical translation of experimental results is also a major challenge for future research.
ObjectiveTo screen long non-coding RNAs (lncRNAs) relevant to programmed cell death (PCD) and construct a nomogram model predicting prognosis of hepatocellular carcinoma (HCC). MethodsThe HCC patients selected from The Cancer Genome Atlas (TCGA) were randomly divided into training set and validation set according to 1∶1 sampling. The lncRNAs relevant to PCD were screened by Pearson correlation analysis, and which associated with overall survival in the training set were screened by univariate Cox proportional hazards regression (abbreviation as “Cox regression”), and then multivariate Cox regression was further used to analyze the prognostic risk factors of HCC patients, and the risk score function model was constructed. According to the median risk score of HCC patients in the training set, the HCC patients in each set were assigned into a high-risk and low-risk, and then the Kaplan-Meier method was used to draw the overall survival curve, and the log-rank test was used to compare the survival between the HCC patients with high-risk and low-risk. At the same time, the area under receiver operating characteristic curve (AUC) was used to evaluate the value of the risk score function model in predicting the 1-, 3-, and 5-year overall survival rates of HCC patients in the training set, validation set, and integral set. Then the nomogram was constructed based on the risk score function model and factors validated in clinic, and its predictive ability for the prognosis of HCC patients was evaluated. ResultsA total of 374 patients with HCC were downloaded from the TCGA, of which 342 had complete clinicopathologic data, including 171 in the training set and 171 in the validation set. Finally, 8 lncRNAs genes relevant to prognosis (AC099850.3, LINC00942, AC040970.1, AC022613.1, AC009403.1, AL355974.2, AC015908.3, AC009283.1) were screened out, and the prognostic risk score function model was established as follows: prognostic risk score=exp1×β1+exp2×β2...+expi×βi (expi was the expression level of target lncRNA, βi was the coefficient of multivariate Cox regression analysis of target lncRNA). According to this prognostic risk score function model, the median risk score was 0.89 in the training set. The patients with low-risk and high-risk were 86 and 85, 86 and 85, 172 and 170 in the training set, validation set, and integral set, respectively. The overall survival curves of HCC patients with low-risk drawn by Kaplan-Meier method were better than those of the HCC patients with high-risk in the training set, validation set, and integral set (P<0.001). The AUCs of the prognostic risk score function model for predicting the 1-, 3-, and 5-year overall survival rates in the training set were 0.814, 0.768, and 0.811, respectively, in the validation set were 0.799, 0.684, and 0.748, respectively, and in the integral set were 0.807, 0.732, and 0.784, respectively. The multivariate Cox regression analysis showed that the prognostic risk score function model was a risk factor affecting the overall survival of patients with HCC [<0.89 points as a reference, RR=1.217, 95%CI (1.151, 1.286), P<0.001]. The AUC (95%CI) of the prognostic risk score function model for predicting the overall survival rate of HCC patients was 0.822 (0.796, 0.873). The AUCs of the nomogram constructed by the prognostic risk score function model in combination with clinicopathologic factors to predict the 1-, 3-, and 5-year overall survival rates were 0.843, 0.839, and 0.834. The calibration curves of the nomogram of 1-, 3-, and 5-year overall survival rates in the training set were close to ideal curve, suggesting that the predicted overall survival rate by the nomogram was more consistent with the actual overall survival rate. ConclusionThe prognostic risk score function model constructed by the lncRNAs relevant to PCD in this study may be a potential marker of prognosis of the patients with HCC, and the nomogram constructed by this model is more effective in predicting the prognosis (overall survival) of patients with HCC.
ObjectiveTo understand the research progress of related biomarkers in early diagnosis of gastric cancer in recent years.MethodThe domestic and foregin literatures on studies of biomarkers of early diagnosis of gastric cancer in recent years were reviewed.ResultsAt present, the sensitivity and specificity of serum tumor biomarkers of gastric cancer such as CEA and CA19-9 were lower, so the molecular markers that could predict, screen, and diagnose gastric cancer in the early stage were further explored. The recent studies suggested that microRNAs, long non-coding RNAs, circular RNAs, exosome, etc. molecular markers in early diagnosis of gastric cancer had better prospects of clinilal application.ConclusionWith the continuous development of molecular biology technology, the values of microRNAs, long non-coding RNAs, circular RNAs, DNA, etc. in early diagnosis of gastric cancer would be further explored.
Calcific aortic valve disease has been the most common heart valve disorder in western world, accompanying with the increase of morbidity in our country year by year. Several molecules and mechanisms are involved in the progression of aortic valve calcification, which intensify the complexity of this pathological process. It is known that inflammation, a key factor in many diseases, has its own role in the development of aortic valve calcification. It has been demonstrated that inflammation, one of the most important participants in this disorder, which may accelerate the local lesions in aortic valve via promoting the expression of osteogenic differentiation of associated factors or decreasing the level of protective molecules. Dyslipidemia is a traditional risk factor of cardiovascular events. However, it may induce or enhance the inflammatory response whereby facilitates the calcific lesions in aortic valve. Recently, several researches have illustrated that non-coding RNAs, a stimulative factor in the progression of malignant tumor, might play a role in the development of aortic valve calcification. MiRNA and lncRNA, the non-coding RNAs which regulate the expression of genes involved in inflammatory and osteogenic differentiation, are undeniable regulators of aortic valve calcification.