1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "magnetic field" 20 results
        • Effects of 50 Hz electromagnetic field on rat working memory and investigation of neural mechanisms

          With the widespread use of electrical equipment, cognitive functions such as working memory (WM) could be severely affected when people are exposed to 50 Hz electromagnetic fields (EMF) for long term. However, the effects of EMF exposure on WM and its neural mechanism remain unclear. In the present paper, 15 rats were randomly assigned to three groups, and exposed to an EMF environment at 50 Hz and 2 mT for a different duration: 0 days (control group), 24 days (experimental group I), and 48 days (experimental group II). Then, their WM function was assessed by the T-maze task. Besides, their local field potential (LFP) in the media prefrontal cortex (mPFC) was recorded by the in vivo multichannel electrophysiological recording system to study the power spectral density (PSD) of θ and γ oscillations and the phase-amplitude coupling (PAC) intensity of θ-γ oscillations during the T-maze task. The results showed that the PSD of θ and γ oscillations decreased in experimental groups I and II, and the PAC intensity between θ and high-frequency γ (hγ) decreased significantly compared to the control group. The number of days needed to meet the task criterion was more in experimental groups I and II than that of control group. The results indicate that long-term exposure to EMF could impair WM function. The possible reason may be the impaired communication between different rhythmic oscillations caused by a decrease in θ-hγ PAC intensity. This paper demonstrates the negative effects of EMF on WM and reveals the potential neural mechanisms from the changes of PAC intensity, which provides important support for further investigation of the biological effects of EMF and its mechanisms.

          Release date:2023-12-21 03:53 Export PDF Favorites Scan
        • MAJOR INFLUENTIAL FACTORS OF THE MICTURITION ALERT DEVICE DEDICATED TO NEUROGENIC BLADDERS

          Objective To study major influential factors of the micturition alert device dedicated to neurogenic bladders for the product design and cl inical appl ication of the device. Methods One ferrite permanent magnet with thickness and diameter of 3 mm and 10 mm, respectively, and three NdFeB permanent magnets with the thickness of 3 mm and diameter of 10, 15 and 20 mm, respectively, were used. The effects of thickness of the abdominal wall as well as the position and type of permanent magnets on the micturition alert device dedicated to neurogenic bladders were measured in vitro simulated test, when the abdominal wall was set to 2, 3, 4, 5, 6, 7, 8 and 9 cm, respectively, and the position of permanent magnets was 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 cm, respectively. The effect of the geomagnetic field on the device was measured under the condition that the thickness of the simulated abdominal wall was set to 2, 3, 4 and 5 cm, respectively,and the position of permanent magnets was 2, 3, 4, 5, 6, 7, 8, 9 and 10 cm, respectively. Results The value showed inthe warning unit was positively correlated with the position of the ferrite permanent magnet only when the thickness ofthe simulated abdominal wall was 2 cm (r=0.632, P lt; 0.05). The correlation between the value of the warning unit andthe position of NdFeB permanent magnets was significant (r gt; 0.622, P lt; 0.05), which was intensified with the increasingdiameter of NdFeB permanent magnets, but weakened with the increasing thickness of the simulated abdominal wall. The effect of the geomagnetic field was correlated with the exposition of the body, the position of the permanent magnet and the thickness of the abdominal wall. Conclusion The major influential factors of the micturition alert device dedicated to neurogenic bladder include the magnetism and location of the permanent magnet, the thickness of the abdominal wall and the geomagnetic field. These factors are correlated with and affect each other. Reasonable allocation of these factors may optimize the device.

          Release date:2016-09-01 09:16 Export PDF Favorites Scan
        • Simulation research on magnetoacoustic B-scan imaging of magnetic nanoparticles

          As drug carriers, magnetic nanoparticles can specifically bind to tumors and have the potential for targeted therapy. It is of great significance to explore non-invasive imaging methods that can detect the distribution of magnetic nanoparticles. Based on the mechanism that magnetic nanoparticles can generate ultrasonic waves through the pulsed magnetic field excitation, the sound pressure wave equation containing the concentration information of magnetic nanoparticles was derived. Using the finite element method and the analytical solution, the consistent transient pulsed magnetic field was obtained. A three-dimensional simulation model was constructed for the coupling calculation of electromagnetic field and sound field. The simulation results verified that the sound pressure waveform at the detection point reflected the position of magnetic nanoparticles in biological tissue. Using the sound pressure data detected by the ultrasonic transducer, the B-scan imaging of the magnetic nanoparticles was achieved. The maximum error of the target area position was 1.56%, and the magnetic nanoparticles regions with different concentrations were distinguished by comparing the amplitude of the boundary signals in the image. Studies in this paper indicate that B-scan imaging can quickly and accurately obtain the dimensional and positional information of the target region and is expected to be used for the detection of magnetic nanoparticles in targeted therapy.

          Release date:2020-12-14 05:08 Export PDF Favorites Scan
        • Effect of pulsed electromagnetic fields on mesenchymal stem cell-derived exosomes in inhibiting chondrocyte apoptosis

          The study aims to explore the effect of mesenchymal stem cells-derived exosomes (MSCs-Exo) on staurosporine (STS)-induced chondrocyte apoptosis before and after exposure to pulsed electromagnetic field (PEMF) at different frequencies. The AMSCs were extracted from the epididymal fat of healthy rats before and after exposure to the PEMF at 1 mT amplitude and a frequency of 15, 45, and 75 Hz, respectively, in an incubator. MSCs-Exo was extracted and identified. Exosomes were labeled with DiO fluorescent dye, and then co-cultured with STS-induced chondrocytes for 24 h. Cellular uptake of MSC-Exo, apoptosis, and the protein and mRNA expression of aggrecan, caspase-3 and collagenⅡA in chondrocytes were observed. The study demonstrated that the exposure of 75 Hz PEMF was superior to 15 and 45 Hz PEMF in enhancing the effect of exosomes in alleviating chondrocyte apoptosis and promoting cell matrix synthesis. This study lays a foundation for the regulatory mechanism of PEMF stimulation on MSCs-Exo in inhibiting chondrocyte apoptosis, and opens up a new direction for the prevention and treatment of osteoarthritis.

          Release date:2023-02-24 06:14 Export PDF Favorites Scan
        • Spherical measurement-based analysis of gradient nonlinearity in magnetic resonance imaging

          The gradient field, one of the core magnetic fields in magnetic resonance imaging (MRI) systems, is generated by gradient coils and plays a critical role in spatial encoding and the generation of echo signals. The uniformity or linearity of the gradient field directly impacts the quality and distortion level of MRI images. However, traditional point measurement methods lack accuracy in assessing the linearity of gradient fields, making it difficult to provide effective parameters for image distortion correction. This paper introduced a spherical measurement-based method that involved measuring the magnetic field distribution on a sphere, followed by detailed magnetic field calculations and linearity analysis. This study, applied to assess the nonlinearity of asymmetric head gradient coils, demonstrated more comprehensive and precise results compared to point measurement methods. This advancement not only strengthens the scientific basis for the design of gradient coils but also provides more reliable parameters and methods for the accurate correction of MRI image distortions.

          Release date:2025-02-21 03:20 Export PDF Favorites Scan
        • Long term power frequency electromagnetic fields exposure influences the causal network connection pattern of local field potentials during working memory

          The possible influence of electromagnetic field (EMF) on the function of neural systems has been widely concerned. In this article, we intend to investigate the effects of long term power frequency EMF exposure on brain cognitive functions and it’s mechanism. The Sprague-Dawley (SD) rats were randomly divided into 3 groups: the rats in EMF Ⅰ group were placed in the 2 mT power frequency EMF for 24 days. The rats in EMF Ⅱ group were placed in the 2 mT power frequency EMF for 48 days. The rats in control group were not exposed to the EMF. Then, the 16 channel local field potentials (LFPs) were recorded from rats’ prefrontal cortex (PFC) in each group during the working memory (WM) tasks. The causal networks of LFPs were also established by applying the directed transfer function (DTF). Based on that, the differences of behavior and the LFPs network connection patterns between different groups were compared in order to investigate the influence of long term power frequency EMF exposure on working memory. The results showed the rats in the EMF Ⅱ group needed more training to reach the task correction criterion (over 80%). Moreover, the causal network connection strength and the global efficiency of the rats in EMF Ⅰ and EMF Ⅱ groups were significantly lower than the corresponding values of the control group. Meanwhile, significant differences of causal density values were found between EMF Ⅱ group and the other two groups. These results indicate that long term exposure to 2 mT power frequency EMF will reduce the connection strength and the information transfer efficiency of the LFPs causal network in the PFC, as well as the behavior performance of the rats. These results may explain the effect of EMF exposure on working memory from the view of neural network connectivity and provide a support for further studies on the mechanism of the effect of EMF on cognition.

          Release date:2019-02-18 02:31 Export PDF Favorites Scan
        • Experimental study on the treatment of postmenopausal osteoporosis with low-frequency pulsed electromagnetic fields

          This study aims to investigate the therapeutic efficacy of 50 Hz-0.6 mT low-frequency pulsed electromagnetic field (PEMF) on postmenopausal osteoporosis in ovariectomized rats. Thirty 3-month-old female SD rats were selected and divided into a sham operation group (Sham), an ovariectomized model group (OVX), and a low-frequency pulsed electromagnetic field (PEMF) treatment group, with 10 rats in each group. After 8 weeks, the whole-body bone mineral density (BMD) of each group of rats was measured. The treatment group began to receive PEMF stimulation for 90 minutes daily, while the OVX group only received a simulated placement without electricity. After 6 weeks of intervention, all rats were sacrificed and tested for in vitro BMD, micro-CT, biomechanics, serum biochemical indicators, and bone tissue-related proteins. The results showed that the BMD of the OVX group was significantly lower than that of the Sham group 8 weeks after surgery, indicating successful modeling. After 6 weeks of treatment, compared with the OVX group, the PEMF group exhibited significantly increased BMD in the whole body, femur, and vertebral bodies. Micro-CT analysis results showed improved bone microstructure, significantly increased maximum load and bending strength of the femur, elevated levels of serum bone formation markers, and increased expression of osteogenic-related proteins. In conclusion, this study demonstrates that daily 90-minute exposure to 50 Hz-0.6 mT PEMF effectively enhances BMD, improves bone biomechanical properties, optimizes bone microstructure, stimulates bone formation, and inhibits bone resorption in ovariectomized rats, highlighting its therapeutic potential for postmenopausal osteoporosis.

          Release date:2025-10-21 03:48 Export PDF Favorites Scan
        • EFFECT OF PULSED ELECTROMAGNETIC FIELDS OF DIFFERENT TREATMENT TIME ON BONE MINERALDENSITY OF FEMUR IN OVARIECTOMIZED RATS

          To observe the effect of pulsed electromagnetic fields (PEMFs) of different treatment time on bone mineral density of femur in ovariectomized rats, so as to find out the treatment time for the best therapeutic efficacy. Methods Fifty female SD rats were randomly divided into 5 groups: sham-ovariectomized (SHAM) group (no PEMFs treatment), ovariectomy (OVX) control group (no PEMFs treatment), OVX I, II and III groups (PEMFs treatment at 8 Hz frequency with 3. 8 ×10-10A/m intensity 20, 40, and 60 minutes daily for 30 days, respectively). All rats were given bilateral ovariectomy except those in the SHAM control group. Bone mineral density (BMD) of femur was assessed at 30 days after PEMFs treatment. Results In OVX control group, hypotrichosis, hypoactivity and l istlessness were observed after operation; and in SHAM group, OVX I group, OVX II group and OVX III group, pilus, psyche and activity were normal. The BMD values were (0.226 ± 0.011), (0.210 ± 0.011), (0.231 ± 0.013), (0.231 ± 0.017) and (0.229 ± 0.013) g/cm2 in SHAM group, OVX control group, OVX I group, OVX II group and OVX III group respectively, showing significant differences between OVX control group and other groups (P lt; 0.05), but showing no significant differences between other 4 groups (P gt; 0.05). Conclusion P EMFs of the three different treatment times can maintain the BMD in ovariectomized rats. It shows that PEMFs have the same effect of maintaining BMD with increasing of treatment time at the range of 20-60 minutes in ovariectomized rats.

          Release date:2016-09-01 09:12 Export PDF Favorites Scan
        • EFFECT OF LOW FREQUENCY PULSED ELECTROMAGNETIC FIELDS ON LUMBAR BONE HISTOMORPHOMETRY IN OVARIECTOMIZED OSTEOPOROSIS RATS

          Objective To investigate the changes of lumbar bone histomorphometry after exposure to low frequency pulsed electromagnetic fields (PEMFs), and to further understand the effect of PEMFs on osteoporosis (OP) in ovariectomizedOP rats. Methods Sixty-six 3-month-old Sprague Dawley rats were randomly divided into 4 groups: group A(n=12), groupB (n=12), group C (n=12), and group D (n=30). In group A, the ovaries were not resected as sham-ovariectomy; in groupsB, C, and D, the ovaries were resected. At 12 weeks after ovariectomy, the rats were exposed to PEMFs at 8 Hz, 3.8 mT, and 40 minutes/ day for 30 days in group B; the rats were administered with premarin [0.065 mg/(kg·d) by gavage for 30 days] in group C; in group D, the rats were housed as ovariectomy control. The hair and activity of rats were observed; the levels of serum estradiol were determined. At 30 days after intervention, all rats were sacrificed to harvest the L4 vertebrae for bone histomorphometry. Results General observation showed hair loss and decreased activity in group D, and no abnormal appearances in groups A, B, and C. The level of serum estradiol in group A was significantly higher than that in group D [(54.93 ± 23.52) pg/mL vs. (31.99 ± 23.45) pg/mL] (t=2.345, P=0.029). Histological observation showed thinness of sclerotin, bigger medullary cavity, and sparse and thinner bone trabecula in group D; uniform bone trabecula with no breakage in groups A, B, and C at 30 days after intervention. The ratio of trabecular bone area in group B was significantly higher than that in group D (P lt; 0.05); it was higher than that in groups A and C, showing no significant difference (P gt; 0.05). The trabecular thickness in group B was significantly higher than that in group D (P lt; 0.05), but it was lower than that in groups A and C, showing no significant difference (P gt; 0.05). The trabecular number in group B was significantly lower than that in group D (P lt; 0.05), but it was higher than that in groups A and C, showing no significant difference (P gt; 0.05). The trabecular separation in group B was higher than that in group D and lower than that in groups A and C, showing no significant difference (P gt; 0.05). Conclusion PEMFs at 8 Hz and 3.8 mT can significantly improve the character of bone microstructure in ovariectomized OP rats, increase the ratio of bone trabecular area and trabecular thickness, and decrease the trabecular number.

          Release date:2016-08-31 05:42 Export PDF Favorites Scan
        • Curative Effects of Pulsed Electromagnetic Fields on Postmenopausal Osteoporosis

          We investigated the effects and optimal treatment frequency of pulsed electromagnetic fields (PEMFs) on postmenopausal osteoporosis (PMO). A comparison was performed with the cyclical alendronate and a course of PEMFs in the treatment for postmenopausal osteoporosis on bone mineral density (BMD), pain intensity and balance function. There was no significant difference between the two groups on mean percentage changes from baseline of BMD within 24 weeks after random treatments (P≥0.05). However, at the ends of 48 weeks and 72 weeks, the BMD of the PEMFs group were significantly lower than that of the alendronate group (P<0.05). No significant difference was detected between the two groups with regard to treatment effects on Visual Analogue Scale score, the Timed Up & Go Test and Berg Balance Scale score. Compared with cyclical alendronate, a course of PEMFs was as effective as alendronate in treating PMO for at least 24weeks. So its optimal treatment frequency for PMO may be one course per six months.

          Release date: Export PDF Favorites Scan
        2 pages Previous 1 2 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品