Objective To investigate the effect of human tooth bone graft materials on the proliferation, differentiation, and morphology of macrophages, and to understand the biocompatibility and cytotoxicity of human tooth bone graft materials. Methods Fresh human teeth were collected to prepare human tooth bone graft materials, the adhesion of mouse mononuclear macrophages RAW264.7 to human bone graft materials was observed under confocal microscopy. Scanning electron microscopy was used to observe the morphology of human tooth bone graft materials, OSTEONⅡ synthetic highly resorbable bone grafting materials, and untreated tooth powder (dental particles without preparation reagents). Different components of the extract were prepared in 4 groups: group A (DMEM medium containing 10% fetal bovine serum), group B (human tooth bone graft materials), group C (OSTEONⅡ synthetic highly resorbable bone grafting materials), group D (untreated tooth powder without preparation reagents). The 4 groups of extracts were co-cultured with the cells, and the cytotoxicity was qualitatively determined by observing the cell morphological changes by inverted microscope. The cell proliferation and differentiation results and cell relative proliferation rate were determined by MTT method to quantitatively determine cytotoxicity. The cell viability was detected by trypanosoma blue staining, and tumor necrosis factor α (TNF-α ) and interleukin 6 (IL-6) expressions were detected by ELISA. Results Scanning electron microscopy showed that the surface of the human tooth bone graft material and the OSTEONⅡ synthetic highly resorbable bone grafting materials had a uniform pore structure, while the untreated tooth particle collagen fiber structure and the demineralized dentin layer collapsed without specific structure. Confocal microscopy showed that the cells grew well on human tooth bone graft materials. After co-culture with the extract, the morphology and quantity of cells in groups A, B, and C were normal, and the toxic reaction grades were all grade 0, while group D was grade 3 reaction. MTT test showed that the cytotoxicity of groups B and C was grade 0 or 1 at each time point, indicating that the materials were qualified. The cytotoxicity was grade 2 in group D at 1 day after culture, and was grade 4 at 3, 5, and 7 days. Combined with cell morphology analysis, the materials were unqualified. The trypanosoma blue staining showed that the number of cells in groups A, B, and C was significantly higher than that in group D at each time point (P<0.05), but no significant difference was found among groups A, B, and C (P<0.05). ELISA test showed that the levels of TNF-α and IL-6 in groups A, B, and C were significantly lower than those in group D (P<0.05), but no significant difference was found among groups A, B, and C (P<0.05). Conclusion The human tooth bone graft materials is co-cultured with mice mononuclear macrophages without cytotoxicity. The extract has no significant effect on cell proliferation and differentiation, does not increase the expression of inflammatory factors, has good biocompatibility, and is expected to be used for clinical bone defect repair.
Objective To illustrate the effect and complication of orthopedic applications for biodegradable and absorbable internal fixation of fractures, and to indicate the existent problem and research aspect currently. Methods The recent literatures on orthopedic applications and study of biodegradable and absorbable internal fixation for fractures were reviewed. The effect of biodegradable materials on bone healing was summarized. Results It is good for the stability of fracture fixation and result of treeatment. The biodegradable and absorbable internal fixation fractures had no adverse effect on bone healing. Conclusion There will be more widespread application for biodegradable and absorbable materials in orthopedics, but the intensive research should be carried out to prevent its complication.
Objective
To review the recent advances in the application of graphene oxide (GO) for bone tissue engineering.
Methods
The latest literature at home and abroad on the GO used in the bone regeneration and repair was reviewed, including general properties of GO, degradation performance, biocompatibility, and application in bone tissue engineering.
Results
GO has an abundance of oxygen-containing functionalities, high surface area, and good biocompatibility. In addition, it can promote stem cell adhesion, proliferation, and differentiation. Moreover, GO has many advantages in the construction of new composite scaffolds and improvement of the performance of traditional scaffolds.
Conclusion
GO has been a hot topic in the field of bone tissue engineering due to its excellent physical and chemical properties. And many problems still need to be solved.
Objective To evaluate the osteogenesis of three bio-bone derived materials in repairing segmental bone defects. Methods Sixty Japanese rabbits were made 10 mm radius segmental defects and divided into 5 groups(groups A, B, C ,D and E,n=12). Composite fully deproteinised bone(CFDB, group A), partially deproteinised bone(PDPB, group B), partially decalcified bone(PDCB, group C), autogenous iliac bone graft(group D) and no implant(group E) were implanted into the radius segmental bone defects of rabbits. The specimens were examined after 4, 8, 12 and 24 weeks; the osteogenesis was evaluated through X-ray radiograph and undecalcified solid tissue histological examination.Results The border between the material and host’s bone was distinct after 4 weeks and blurred after 8 weeks; the density of partial edge of the material was similar to that of radii after 12 weeks. The medullary cavity of bone reopened in group B; the density of most defect area was similar to that of the host bone and there was a few high density shadow in group C; the density of most defect area was higher than that of host bone in group A after 24 weeks. There was no significant difference in radiograph scoring between groups A, B and C after 4 weeks and 8 weeks(P>0.05); the scores of group B and C were higher than that of group A after 12 weeks(P<0.05); and the scores were arranged as follow: group Dgt;group Bgt; group Cgt;group A after24 weeks(P<0.05). Bone callusgrew toward defect area and new bone adhered to the material after 4 weeks and 8 weeks; more new bone formed, and the materials were absorbed and degraded with time. The quantity of bone formation was more in group D than in group B andin group B than in group C and in group C than in group A after 24 weeks(P<0.05).Conclusion PDPB had good osteogenesis in repairing the segmental bone defect, PDCB was inferior to it, both PDPB and PDCB are fit to repair segmental bone defect. Both of them were inferior to autogenous bone.
Objective To sum up the recent progress of common bone graft substitute and to forecast the possible directions for further research. Methods Recent original articles about investigation and appl ication for bone graft substitute were extensively reviewed. Several common bone graft substitutes were selected and expounded in different categories. Results Bone graft was an essential treatment in order to provide structural support, fill bone cavity and promote bone defect heal ing. The gold standard for bone graft was autograft which is subject to many restrictions. In recent years, theresearch and development of bone graft substitute have received publ ic attention. A very great progress has been made in the research and appl ication of allograft bones, synthetic bones and engineered bones, and some research results have been put into use for real products. Conclusion There still exist many problems in present bone graft substitutes. Combining various biomaterials and using the specific processing technology to develop a biomaterial which has the similar mechanical and chemical properties and physical structures to autograft so as to promote bone defect heal ing is the direction for future research.
OBJECTIVE: From the point of view of material science, the methods of tissue repair and defect reconstruct were discussed, including mesenchymal stem cells (MSCs), growth factors, gene therapy and tissue engineered tissue. METHODS: The advances in tissue engineering technologies were introduced based on the recent literature. RESULTS: Tissue engineering should solve the design and preparation of molecular scaffold, tissue vascularization and dynamic culture of cell on the scaffolds in vitro. CONCLUSION: Biomaterials play an important role in the tissue engineering. They can be used as the matrices of MSCs, the delivery carrier of growth factor, the culture scaffold of cell in bioreactors and delivery carrier of gene encoding growth factors.
ObjectiveTo summarize the research progress of tissue-engineered bile duct in recent years.
MethodsThe related literatures about the tissue-engineered bile duct were reviewed.
ResultsIn recent years, the research of tissue-engineered bile duct has made a breakthrough in scaffold materials, seed cells, growth factors etc. However, the tissue-engineered bile duct is still in the research stage of animal experiments, which can not be directly applied to clinical practice.
ConclusionsThe research of tissue-engineered bile duct becomes popular at present. With the rapid development of materials science and cell biology, the basic research and clinical application of tissue-engineered duct will be more in-depth research and extension, which might bring new ideas and therapeutic measures for patients with biliary defect or stenosis.
OBJECTIVE: To construct tissue engineering bone with bio-derived materials and bone marrow stromal cells (MSCs), and to investigate the effect of allogeneic engineering bone implants on healing of segmental bone defects. METHODS: MSCs being aspirated aseptically from tibial tuberosities of young rhesus monkeys were induced into osteoblasts in vitro and then were cultured and marked with 5-bromo-2-deoxyuridine (BrdU). Tissue engineering bones were constructed with these labeled osteoblasts being seeded onto bio-derived materials made from fresh human bones which were treated physically and chemically, Then the constructs were implanted in 15 allogeneic monkeys to bridge 2.5 cm segmental bone defects of left radius as experimental groups, bio-derived materials only were implanted to bridge same size defects of right radius as control group. and, 2.5 cm segmental bone defects of both sides of radius were left empty in two rhesus monkeys as blank group. Every 3 monkeys were sacrificed in the 1st, 2nd, 3rd, 6th and 12th weeks postoperatively and both sides of the implants samples were examined macroscopically, histologicaly, and immunohistochemicaly. The two monkeys in blank group were sacrificed in the 12th week postoperatively. RESULTS: Apparent inflammatory reactions were seen around both sides of the implants samples in the 1st, 2nd, 3rd weeks, but it weakened in the 6th week and disappeared at the 12th week. The labeled osteoblasts existed at the 6th week but disappeared at the 12th week. The bone defects in experimental group were repaired and the new bone formed in multipoint way, and osteoid tissue, cartilage, woven bone and lamellar bone occurred earlier when compared with control group in which the bone defects were repaired in ’creep substitution’ way. The bone defects in blank group remained same size at the 12th week. CONCLUSIONS: Engineering bones constructed with bio-derived materials and MSCs were capable of repairing segmental bone defects in allogeneic monkeys beyond ’creep substitution’ way and making it healed earlier. Bio-derived materials being constituted with allogeneic MSCs may be a good option in construction of bone tissue engineering.
In the reconstruction of the concha, standing support was necessary. From 1984 to 1996, 33 cases of aurical defects were admitted. Three standing-materials were chosen, and they included carved autogenous cartilage, heterogenous concha cartilage and steel wire work silicon-wires with silastic rubber tube. After expansion of the postauricular skin by tinsion expander, the standing-material was enveloped and total ear reconstruction or repair was performed. After followed up for average of 3.5 years, of the twenty-two cases, 16 had a satisfactory result, unsatisfied in 3 and failure in 3. It was concluded that the outcome of autogenous concha cartilage as a standing-material was good. The other two materials if used should be very carefully.
As a temporary skin substitute, the dressings can protect the wound, stop bleeding, prevent infection and contribute to wound healing. According to the characteristics of the materials, wound dressings can be classified into traditional wound dressings, interactive dressings, bioactive dressings, tissue engineering dressings and smart dressings, etc. Different dressings have different characteristics, and some products have been widely used in clinic. Recently nanomaterials and three-dimensional bio-printing technology have significantly improved the performance of wound dressings. Future dressings will be developed from single function to multi-function composite, and integrated into an intelligent one. This paper reviews the current research progress and future development prospects of wound dressings.