ObjectiveTo prepare polyurethane (PU) microspheres and evaluate its physicochemical properties and biocompatibility for biomedical applications in vitro.
MethodsThe PU microspheres were prepared by self-emulsification procedure at the emulsification rates of 1 000, 2 000, 3 000, and 4 000 r/min. The molecular structure was tested by Fourier transform infrared spectrometer and the surface and interior morphology of PU microspheres were observed by scanning electron microscopy (SEM). PU microspheres prepared at best emulsification rate were selected for the subsequent experiment. The human umbilical vein endothelial cells (HUVECs) were cultured and seeded on the materials, then cell morphology and adhesion status were observed by calcein-acetoxymethylester/pyridine iodide (Calcein-AM/PI) staining. The cells were cultured in the H-DMEM containing 10%FBS with additional 1% phenol (group A), in the extracts of PU prepared according to GB/T 16886.12 standard (group B), and in H-DMEM containing 10%FBS (group C), respectively. Cell counting kit 8 (CCK-8) assay was used to detect the cell viability. The blood compatibility experiments were used to evaluate the blood compatibility, the PU extracts as experimental group, stroke-physiological saline solution as negative control group, and distilled water as positive control group. The hemolytic rate was calculated.
ResultsThe SEM results of PU microspheres at the emulsification rate of 2 000 r/min showed better morphology and size. The microstructure of the PU was rough on the surface and porous inside. The Calcein-AM/PI staining showed that the HUVECs attached to the PU tightly and nearly all cells were stained by green. CCK-8 assays demonstrated that group B and group C presented a significantly higher cell proliferative activity than group A (P<0.05), indicating low cytotoxicity of the PU. The absorbance value was 0.864±0.002 in positive control group and was 0.015±0.001 in negative control group. The hemolysis rate of the PU extracts was 0.39%±0.07% (<5%), indicating no hemolysis.
ConclusionThe PU microspheres are successfully prepared by self-emulsification. The scaffold can obviously promote cell attachments and proliferation and shows low cytotoxicity and favorable blood compatibility, so it might be an ideal filler for soft tissue.
Objective To investigate the promotion effects of the collagen membrane incorporating bFGF impregnated microspheres on the wound healing of the pigskin losing its full-thickness layers. Methods The bFGF containing microspheres was added into the dry microspleres.The collagen membranes were prepared by incorporating bFGF-impregnated microspheres, and 6 York pig models of skin wounds with loss of their full-thickness layers were established for the ob servation of the effects on the wound healing. Results The healing time and the 28day healing rate were 27.30±1.14 days and 98.12%±1.97%, respectively.The healing rate was significantly higher and the healing time was significantl y shorter in the experimental group than in the control group (Plt;0.05). The histological examination showed that the proliferation condition of the epidermiswasalso much better in the experimental group. Conclusion Incorporation of bFGF-impregnated microspheres into the collagen membrane is a promising method of pro moting the healing of the wound with a loss of the fullthickness skin.
Objective To investigate the preparation and properties of the novel silica (SiO2)/hydroxyapatite (HAP) whiskers porous ceramics scaffold. Methods The HAP whiskers were modified by the SiO2 microspheres using the St?ber method. Three types of SiO2/HAP whiskers were fabricated under different factors (for the No.1 samples, the content of tetraethoxysilane, stirring time, calcination temperature, and soaking time were 10 mL, 12 hours, 560℃, and 0.5 hours, respectively; and in the No.2 samples, those were 15 mL, 24 hours, 650℃, and 2 hours, respectively; while those in the No.3 samples were 20 mL, 48 hours, 750℃, and 4 hours, respectively). The phase and morphology of the self-made HAP whisker and 3 types of SiO2/HAP whiskers were detected by the X-ray diffraction analysis and scanning electron microscopy. Taken the self-made HAP whisker and 3 types of SiO2/HAP whiskers as raw materials, various porous ceramic materials were prepared using the mechanical foaming method combined with extrusion molding method, and the low-temperature heat treatment. The pore structure of porous ceramics was observed by scanning electron microscopy. Its porosity and pore size distribution were measured. And further the axial compressive strength was measured, and the biodegradability was detected by simulated body fluid. Cell counting kit 8 method was used to conduct cytotoxicity experiments on the extract of porous ceramics. Results The SiO2 microspheres modified HAP whiskers and its porous ceramic materials were prepared successfully, respectively. In the SiO2/HAP whiskers, the amorphous SiO2 microspheres with a diameter of 200 nm, uniform distribution and good adhesion were attached to the surface of the whiskers, and the number of microspheres was controllable. The apparent porosity of the porous ceramic scaffold was about 78%, and its pore structure was composed of neatly arranged longitudinal through-holes and a large number of micro/nano through-holes. Compared with HAP whisker porous ceramic, the axial compressive strength of the SiO2/HAP whisker porous ceramics could reach 1.0 MPa, which increased the strength by nearly 4 times. Among them, the axial compressive strength of the No.2 SiO2/HAP whisker porous ceramic was the highest. The SiO2 microspheres attached to the surface of the whiskers could provide sites for the deposition of apatite. With the content of SiO2 microspheres increased, the deposition rate of apatite accelerated. The cytotoxicity level of the prepared porous ceramics ranged from 0 to 1, without cytotoxicity. Conclusion SiO2/HAP whisker porous ceramics have good biological activity, high porosity, three-dimensional complex pore structure, good axial compressive strength, and no cytotoxicity, which make it a promising scaffold material for bone tissue engineering.
Objective To evaluate the suitability of the biodegradable microsphere encapsulation of adenovirus as a targeting vector for gene therapy of hepatocellular carcinoma. Methods Encapsulate the recombinant adenovirus in PLG 〔poly (lactic/glycolic)〕 copolymer by the solution evaporation method, the release test and the bioactivity of viruses incorporated in vitro were studied. Results More than 19.3% of adenovirus was encapsulated in PLG microspheres. The release test shows that the adenovirus was released for more than 200 h, 50% were shed within the first 100 h, and their activity was retained. Conclusion Recombinant adenovirus can be formulated in a polymer preparation of PLG with retention of bioactivity. It may be a valuable vector for the gene therapy of liver cancer.
Objective To study the release properties of basic fibroblast growth factor (bFGF) chitosan microspheres prepared by cross-linking-emulsion method using chitosan as a carrier material so as to lay a foundation for further study. Methods Using 0.6% sodium tripolyphosphate solution as a crosslinking agent and 1.5% solution of chitosan as a carrier material, bFGF chitosan microspheres were prepared by cross-linking-emulsion method. Laser particle size analyzer and Zeta electric potential analyzer were used to measure the particle diameter distribution, scanning electronic microscope to observe the morphology, and ELISA to determine the drug loading, the encapsulation rate, and the drug release properties. Results The particle size of bFGF chitosan microspheres ranged 20.312-24.152 μm. The microspheres were round with a smooth surface and uniform distribution, and it had no apparent porosity. The drug loading and encapsulation rate of microspheres were (7.57 ± 0.34) mg/g and 95.14% ± 1.58%, respectively. The bFGF chitosan microspheres could continuously release bFGF for 24 days; the bFGF level increased gradually with time and reached (820.45 ± 21.34) ng/mL at 24 days; and the microspheres had a burst effect, and the burst rate was 18.08%, and the accumulative release rate of the microspheres reached 82.05% during 24 days. Conclusion It is easy-to-operate to prepare the bFGF chitosan microspheres with the cross-linking-emulsion method. The bFGF chitosan microspheres have smooth surface, uniform distribution, and no apparent porosity.
Four pigs underwent the hepatic arterial infusion with 32P glass microsphere (32PGM) and pigs were killed in 15th, 30th and 90th days separately. Pathological study showed that in early stage there were many small necrotic areas scattered along the hepatic arterioles. Three months later, these necrosis were gradually absorbed and replaced by regenerating hepatic cells. Tumor-inhibition experiment was performed in 40 Bal B/C mice bearing H22 hepatoma. Intratumoral injection of 0.2ml of 32PGM/glycerine suspension (group A, n=20) or 0.2ml of blank glass microsphere/glycerine suspension (group B, n=20) were performed. The average survival time in group A and group B was 24.8 and 11.8 days respectively. Five mice in group A were alive beyond 40 days after treatment, disappearance of tumor was found in two of them. This experiment demonstrates that 32PGM is effective for treatment of experiment hepatoma. The damage to hepatic tissue after infusion is associated with the irregular distribution of microsphere, and this lesion can completely recover within three months.
Objective To compare the characteristics of gelatin microspheres crossl inked by glutaraldehyde (GA) or geni pin (GP). Methods Gelatin microspheres, prepared by the improved emulsified cold-condensation method, were crossl inked by GP and GA, respectively. After being dispersed in PBS, two kinds of microspheres with 60% degree of cross l inking were compared in terms of morphology, swell ing and degrading properties. rhBMP-2 were loaded into the GP and GAmicrospheres, and the encapsulation rate, drug loading and releasing capacity were measured; 100%, 50% and 25% leaching l iquid of GP and GA microspheres were respectively cultured with rat osteoblast (DMEM group as the control), and cell prol iferation was measured by MTT method to grade the cell cytotoxicity. Results GP and GA microspheres were both spherical with the diameters of (78 ± 18) μm and (65 ± 10) μm, and there were no difference between both microspheres in drug loading and encapsulation rate. But, GP microspheres, with long degrading period (28 days) compared to GA microspheres (21 days), had better dispersibil ity, and swell ing rate (89.0% ± 4.8%), the percentage of cumulative drug releasing at 10 days (78.80% ± 4.96%) were both lower than GA microsphere (118.0% ± 7.6%, 90.50% ± 5.12%). The percentages of drug loading of GP and GA were (921 ± 73) and (965 ± 62) ng/g, and the encapsulation rates were 88.5% ± 2.1% and 89.7% ± 1.8%; showing no significant difference (P gt; 0.05). The cell cytotoxicity of 100%, 50% and 25% leaching l iquid of GP microspheres was all at the level I, but leaching l iquid of GA microspheres with corresponding concentration were at the levels of III, III and II. Conclusion GP crossl inked gelatin microspheres are superior to GA crossl inked gelatin microspheres and can be widely used in tissue engineering field.
Objective To evaluate the effect of the local del ivery of basic fibroblast growth factor 2 (bFGF-2) on the osseointegration around titanium implant of diabetic rats. Methods The bFGF-2-loaded poly (lactic-co-glycol ic acid) microspheres were prepared by water/oil/water (W/O/W) double-emulsion solvent evaporation method. Thirty-five male SPF level Sprague Dawley rats, weighing 220-250 g and aged 9 weeks, were selected as experimental animals. Ten rats were fedwith the routine diet as normal control group. The other 25 rats were made the diabetic animal model by giving high fat-sugar diet and a low dose streptozotocin (30 mg/ kg) intravenously; 20 rats were made the diabetic animal model successfully. Then 20 rats were randomly divided into diabetic control group (n=10) and bFGF-2 intervention group (n=10). A hole was drilled in the right tibia bone of all rats, and the titanium implant treated by micro-arc oxidation surface was planted into the hole. Simultaneously, the previously prepared microspheres and blood were mixed and were loaded on the surface of the implant before it was implanted into the rats of the bFGF-2 intervention group. At 4 and 8 weeks, the tibia containing implants was harvested, embedded with resin and made undecalcified tissue sl ices to compare the osseointegration. Results At 4 weeks, the implants of the normal control group were surrounded by new lamellar bone with continuity; whereas the tissue around the implants of the diabetic control group contained l ittle woven bone and some fibrous tissue; and obvious new formed bone with continuity was observed in bFGF-2 intervention group. At 8 weeks, the results of 3 groups were similar to those at 4 weeks. At 4 weeks, the percentage of bone-implant contact (BIC) in diabetic control group was significantly less than those in normal control group (P lt; 0.05) and in bFGF-2 intervention group (P lt; 0.05); the BIC in bFGF-2 intervention group was less than in normal control group, but showing no significant difference (P gt; 0.05). After 8 weeks, the BIC in normal control group and in bFGF-2 intervention group were significantly greater than that in diabetic control group (P lt; 0.05), but there was no significant difference between bFGF-2 intervention group and normal control group (P gt; 0.05). Conclusion Local del ivery of bFGF-2 around titanium implants may improve the osseointegration in diabetic rats.
Objective To investigate the growth of tumors and the natural life length of the rats after the adriamycinethylcellulose microspheres(ADM-EC mc) were injected in the rats bearing transplantable liver cancer through their hepatic arteries.Methods ADM-EC mc were infused into the proper hepatic arteries of the Wistar rats (W256). All of the rats were divided randomly into five groups, group 1: control, group 2: normal saline, group 3: conventional ADM, group 4: placebo ethylcellulose microspheres, and group 5: ADM-EC mc. Results As compared with other four groups, the ADM-EC mc (group 5) showed the best inhibition of the growth of tumors and the longest mean life length of the rats. Conclusion Hepatic arterial infusion of ADM-EC mc can inhibit the growth of the tumor, aggravate the necrosis, and improve the effects of the chemotherapy of liver cancer.
Objective To study the outcomes of nerve defect repair with the tissue engineered nerve, which is composed of the complex of SCs, 30% ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeable poly (D, L-lacitic acid) (PDLLA) catheters. Methods SCs were cultured and purified from the sciatic nerves of 1-day-old neonatal SD rats. The 1st passage cells were compounded with bFGF-PLGA sustained release microspheres andECM gel, and then were injected into permeable PDLLA catheters with PLGA microfilaments inside. In this way, the tissueengineered nerve was constructed. Sixty SD rats were included. The model of 15-mm sciatic nerve defects was made, and then the rats were randomly divided into 5 groups, with 12 rats in each. In group A, autograft was adopted. In group B, the blank PDLLA catheters with PBS inside were used. In group C, PDLLA catheters, with PLGA microfilaments and 30% ECM gel inside, were used. In group D, PDLLA catheters, with PLGA microfilaments, SCs and 30% ECM gel inside, were used. In group E, the tissue engineered nerve was appl ied. After the operation, observation was made for general conditions of the rats. The sciatic function index (SFI) analysis was performed at 12, 16, 20 and 24 weeks after the operation, respectively. Eelectrophysiological detection and histological observation were performed at 12 and 24 weeks after the operation, respectively. Results All rats survived to the end of the experiment. At 12 and 16 weeks after the operation, group E was significantly different from group B in SFI (P lt; 0.05). At 20 and 24 weeks after the operation, group E was significantly different from groups B and C in SFI (P lt; 0.05). At 12 weeks after the operation, electrophysiological detection showed nerve conduct velocity (NCV) of group E was bigger than that of groups B and C (P lt; 0.05), and compound ampl itude (AMP) as well as action potential area (AREA) of group E were bigger than those of groups B, C and D (P lt; 0.05). At 24 weeks after the operation, NCV, AMP and AREA of group E were bigger than those of groups B and C (Plt; 0.05). At 12 weeks after the operation, histological observation showed the area of regenerated nerves and the number of myel inated fibers in group E were significantly differents from those in groups A, B and C (Plt; 0.05). The density and diameter of myel inated fibers in group E were smaller than those in group A (Plt; 0.05), but bigger than those in groups B, C and D (P lt; 0.05). At 24 weeks after the operation, the area of regenerative nerves in group E is bigger than those in group B (P lt; 0.05); the number of myel inated fibers in group E was significantly different from those in groups A, B, C (P lt; 0.05); and the density and diameter of myel inated fibers in group E were bigger than those in groups B and C (Plt; 0.05). Conclusion The tissue engineered nerve with the complex of SCs, ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeables PDLLA catheters promote nerve regeneration and has similar effect to autograft in repair of nerve defects.