ObjectiveTo prepare polyurethane (PU) microspheres and evaluate its physicochemical properties and biocompatibility for biomedical applications in vitro.
MethodsThe PU microspheres were prepared by self-emulsification procedure at the emulsification rates of 1 000, 2 000, 3 000, and 4 000 r/min. The molecular structure was tested by Fourier transform infrared spectrometer and the surface and interior morphology of PU microspheres were observed by scanning electron microscopy (SEM). PU microspheres prepared at best emulsification rate were selected for the subsequent experiment. The human umbilical vein endothelial cells (HUVECs) were cultured and seeded on the materials, then cell morphology and adhesion status were observed by calcein-acetoxymethylester/pyridine iodide (Calcein-AM/PI) staining. The cells were cultured in the H-DMEM containing 10%FBS with additional 1% phenol (group A), in the extracts of PU prepared according to GB/T 16886.12 standard (group B), and in H-DMEM containing 10%FBS (group C), respectively. Cell counting kit 8 (CCK-8) assay was used to detect the cell viability. The blood compatibility experiments were used to evaluate the blood compatibility, the PU extracts as experimental group, stroke-physiological saline solution as negative control group, and distilled water as positive control group. The hemolytic rate was calculated.
ResultsThe SEM results of PU microspheres at the emulsification rate of 2 000 r/min showed better morphology and size. The microstructure of the PU was rough on the surface and porous inside. The Calcein-AM/PI staining showed that the HUVECs attached to the PU tightly and nearly all cells were stained by green. CCK-8 assays demonstrated that group B and group C presented a significantly higher cell proliferative activity than group A (P<0.05), indicating low cytotoxicity of the PU. The absorbance value was 0.864±0.002 in positive control group and was 0.015±0.001 in negative control group. The hemolysis rate of the PU extracts was 0.39%±0.07% (<5%), indicating no hemolysis.
ConclusionThe PU microspheres are successfully prepared by self-emulsification. The scaffold can obviously promote cell attachments and proliferation and shows low cytotoxicity and favorable blood compatibility, so it might be an ideal filler for soft tissue.
Objective
To review the research progress of growth factor sustained-release microspheres in fat transplantation.
Methods
The recently published 1iterature at home and abroad related the growth factor sustained-release microspheres in fat transplantation was reviewed and analyzed.
Results
The sustained-release microsphere carrier materials include natural polymer materials and synthetic polymer materials.The sustained-release complexes of different microsphere materials with different growth factors can promote the vascularization of transplanted fat in a timely manner, improve the survival rate of grafts, and reduce the incidence of complications such as liquefaction, calcification, and necrosis.
Conclusion
The growth factor sustained-release microspheres have the characteristics of persistence and controllability, which is a research hotspot in the field of fat transplantation and has broad application prospects.
Objective
To investigate the effects of in-vitro monolayer culture and three-dimensional (3-D) alginate microsphere culture on the differentiation of normal human nucleus pulposus cells (NPCs), and to discuss the regulatory mechanism of restoring the phenotype of dedifferentiated NPCs by culturing resveratrol (RES) in 3-D alginate microsphere.
Methods
Normal human nucleus pulposus tissues were harvested for culture and identification of NPCs from 6 patients with burst lumbar vertebra fracture. NPCs at passages 1, 3, 5, and 7 in the in-vitro monolayer culture were harvested to observe the morphology, cell aging, and proteoglycan expression. The cell proliferation rates of NPCs at passage 1 in-vitro in monolayer culture and in 3-D alginate microsphere culture were detected. NPCs at passage 7 were randomly divided into 3-D alginate microsphere control group (group A), RES group (group B), silent mating type information regulation 2 homolog 1 (SIRT1)- small interfering RNA (siRNA) + RES group (group C), and negative control-siRNA + RES group (group D); and NPCs in the in-vitro monolayer culture was monolayer control group (group E). After corresponding treatment, Western blot was used for determining the protein expressions of SIRT1, Aggrecan, and collagen type II; real-time fluorescence quantitative PCR was used for detecting SIRT1 mRNA expression.
Results
The cultured cells were identified to be NPCs. Morphological observation, senescence-associated β-galactosidase (SA-β-gal) staining, and toluidine blue staining showed that dedifferentiation of normal NPCs tended to occur under continuous in-vitro monolayer culture, which was more obvious with increase of passage number. NPCs in 3-D alginate microsphere culture showed significantly lower proliferation rate than NPCs in the in-vitro monolayer culture (P lt; 0.05), but it could significantly improve the protein expressions of collagen type II and Aggrecan in dedifferentiated NPCs, showing significantly difference between groups E and A (P lt; 0.05). The protein expressions of SIRT1, collagen type II, and Aggrecan in group B were significantly improved when compared with that in group A (P lt; 0.05). Real-time fluorescence quantitative PCR and Western blot showed that the expressions of SIRT1 mRNA and proteins in group C were significantly inhibited after transfected with SIRT1-siRNA when compared with those in groups B and D (P lt; 0.05), and the protein expressions of collagen type II and Aggrecan in group C were significantly lower than those in groups B and D (P lt; 0.05).
Conclusion
Continuous in-vitro monolayer culture could efficiently cultivate numerous seeding NPCs, but it is liable to dedifferentiate. In 3-D alginate microsphere culture, RES could restore the phenotype of dedifferentiated NPCs and synthesize more extracellular matrix, which is related to the regulation of SIRT1.
Four pigs underwent the hepatic arterial infusion with 32P glass microsphere (32PGM) and pigs were killed in 15th, 30th and 90th days separately. Pathological study showed that in early stage there were many small necrotic areas scattered along the hepatic arterioles. Three months later, these necrosis were gradually absorbed and replaced by regenerating hepatic cells. Tumor-inhibition experiment was performed in 40 Bal B/C mice bearing H22 hepatoma. Intratumoral injection of 0.2ml of 32PGM/glycerine suspension (group A, n=20) or 0.2ml of blank glass microsphere/glycerine suspension (group B, n=20) were performed. The average survival time in group A and group B was 24.8 and 11.8 days respectively. Five mice in group A were alive beyond 40 days after treatment, disappearance of tumor was found in two of them. This experiment demonstrates that 32PGM is effective for treatment of experiment hepatoma. The damage to hepatic tissue after infusion is associated with the irregular distribution of microsphere, and this lesion can completely recover within three months.
Objective To compare the characteristics of gelatin microspheres crossl inked by glutaraldehyde (GA) or geni pin (GP). Methods Gelatin microspheres, prepared by the improved emulsified cold-condensation method, were crossl inked by GP and GA, respectively. After being dispersed in PBS, two kinds of microspheres with 60% degree of cross l inking were compared in terms of morphology, swell ing and degrading properties. rhBMP-2 were loaded into the GP and GAmicrospheres, and the encapsulation rate, drug loading and releasing capacity were measured; 100%, 50% and 25% leaching l iquid of GP and GA microspheres were respectively cultured with rat osteoblast (DMEM group as the control), and cell prol iferation was measured by MTT method to grade the cell cytotoxicity. Results GP and GA microspheres were both spherical with the diameters of (78 ± 18) μm and (65 ± 10) μm, and there were no difference between both microspheres in drug loading and encapsulation rate. But, GP microspheres, with long degrading period (28 days) compared to GA microspheres (21 days), had better dispersibil ity, and swell ing rate (89.0% ± 4.8%), the percentage of cumulative drug releasing at 10 days (78.80% ± 4.96%) were both lower than GA microsphere (118.0% ± 7.6%, 90.50% ± 5.12%). The percentages of drug loading of GP and GA were (921 ± 73) and (965 ± 62) ng/g, and the encapsulation rates were 88.5% ± 2.1% and 89.7% ± 1.8%; showing no significant difference (P gt; 0.05). The cell cytotoxicity of 100%, 50% and 25% leaching l iquid of GP microspheres was all at the level I, but leaching l iquid of GA microspheres with corresponding concentration were at the levels of III, III and II. Conclusion GP crossl inked gelatin microspheres are superior to GA crossl inked gelatin microspheres and can be widely used in tissue engineering field.
Objective To investigate the promotion effects of the collagen membrane incorporating bFGF impregnated microspheres on the wound healing of the pigskin losing its full-thickness layers. Methods The bFGF containing microspheres was added into the dry microspleres.The collagen membranes were prepared by incorporating bFGF-impregnated microspheres, and 6 York pig models of skin wounds with loss of their full-thickness layers were established for the ob servation of the effects on the wound healing. Results The healing time and the 28day healing rate were 27.30±1.14 days and 98.12%±1.97%, respectively.The healing rate was significantly higher and the healing time was significantl y shorter in the experimental group than in the control group (Plt;0.05). The histological examination showed that the proliferation condition of the epidermiswasalso much better in the experimental group. Conclusion Incorporation of bFGF-impregnated microspheres into the collagen membrane is a promising method of pro moting the healing of the wound with a loss of the fullthickness skin.
Objective To estimate the relationship between arterial blood ketone body ratio (AKBR) and liver function and to appraise the feasibility of adding AKBR into liver function estimate. MethodsFrom 1994 to 1998, 44 patients with unresectable liver cancer recieved the combined radiochemoembolization with mixed emulsion of phosphorus32 glass microspheres (32PGMS), chemoagent and glycerine or lipiodol, via intraoperative hepatic artery instillation, hepatic artery ligation and operational arterial embolization (HAL+OAE) or transcatheter hepatic artery embolization (TAE). Preoperative and postoperative function and energy change level of the liver were tested by liver function test and AKBR. CT, SPECT, AFP were used to judge the therapy effect; multivariate statistical analysis methods were used to evaluate the correlation between AKBR and liver function. Spearmen rank correlation analysis was used to evaluate whether there was any relationship between AKBR and liver function test, and to evaluate that there was any relationship between AKBR and survival time. ResultsA negative correlation showed between the level of AKBR and liver function. The correlation coefficient of the three level of AKBR before operation and survival time was 0.4409. Conclusion AKBR can well reflect the degree of liver function.
Objective To investigate the preparation and properties of the novel silica (SiO2)/hydroxyapatite (HAP) whiskers porous ceramics scaffold. Methods The HAP whiskers were modified by the SiO2 microspheres using the St?ber method. Three types of SiO2/HAP whiskers were fabricated under different factors (for the No.1 samples, the content of tetraethoxysilane, stirring time, calcination temperature, and soaking time were 10 mL, 12 hours, 560℃, and 0.5 hours, respectively; and in the No.2 samples, those were 15 mL, 24 hours, 650℃, and 2 hours, respectively; while those in the No.3 samples were 20 mL, 48 hours, 750℃, and 4 hours, respectively). The phase and morphology of the self-made HAP whisker and 3 types of SiO2/HAP whiskers were detected by the X-ray diffraction analysis and scanning electron microscopy. Taken the self-made HAP whisker and 3 types of SiO2/HAP whiskers as raw materials, various porous ceramic materials were prepared using the mechanical foaming method combined with extrusion molding method, and the low-temperature heat treatment. The pore structure of porous ceramics was observed by scanning electron microscopy. Its porosity and pore size distribution were measured. And further the axial compressive strength was measured, and the biodegradability was detected by simulated body fluid. Cell counting kit 8 method was used to conduct cytotoxicity experiments on the extract of porous ceramics. Results The SiO2 microspheres modified HAP whiskers and its porous ceramic materials were prepared successfully, respectively. In the SiO2/HAP whiskers, the amorphous SiO2 microspheres with a diameter of 200 nm, uniform distribution and good adhesion were attached to the surface of the whiskers, and the number of microspheres was controllable. The apparent porosity of the porous ceramic scaffold was about 78%, and its pore structure was composed of neatly arranged longitudinal through-holes and a large number of micro/nano through-holes. Compared with HAP whisker porous ceramic, the axial compressive strength of the SiO2/HAP whisker porous ceramics could reach 1.0 MPa, which increased the strength by nearly 4 times. Among them, the axial compressive strength of the No.2 SiO2/HAP whisker porous ceramic was the highest. The SiO2 microspheres attached to the surface of the whiskers could provide sites for the deposition of apatite. With the content of SiO2 microspheres increased, the deposition rate of apatite accelerated. The cytotoxicity level of the prepared porous ceramics ranged from 0 to 1, without cytotoxicity. Conclusion SiO2/HAP whisker porous ceramics have good biological activity, high porosity, three-dimensional complex pore structure, good axial compressive strength, and no cytotoxicity, which make it a promising scaffold material for bone tissue engineering.
Objective To study the outcomes of nerve defect repair with the tissue engineered nerve, which is composed of the complex of SCs, 30% ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeable poly (D, L-lacitic acid) (PDLLA) catheters. Methods SCs were cultured and purified from the sciatic nerves of 1-day-old neonatal SD rats. The 1st passage cells were compounded with bFGF-PLGA sustained release microspheres andECM gel, and then were injected into permeable PDLLA catheters with PLGA microfilaments inside. In this way, the tissueengineered nerve was constructed. Sixty SD rats were included. The model of 15-mm sciatic nerve defects was made, and then the rats were randomly divided into 5 groups, with 12 rats in each. In group A, autograft was adopted. In group B, the blank PDLLA catheters with PBS inside were used. In group C, PDLLA catheters, with PLGA microfilaments and 30% ECM gel inside, were used. In group D, PDLLA catheters, with PLGA microfilaments, SCs and 30% ECM gel inside, were used. In group E, the tissue engineered nerve was appl ied. After the operation, observation was made for general conditions of the rats. The sciatic function index (SFI) analysis was performed at 12, 16, 20 and 24 weeks after the operation, respectively. Eelectrophysiological detection and histological observation were performed at 12 and 24 weeks after the operation, respectively. Results All rats survived to the end of the experiment. At 12 and 16 weeks after the operation, group E was significantly different from group B in SFI (P lt; 0.05). At 20 and 24 weeks after the operation, group E was significantly different from groups B and C in SFI (P lt; 0.05). At 12 weeks after the operation, electrophysiological detection showed nerve conduct velocity (NCV) of group E was bigger than that of groups B and C (P lt; 0.05), and compound ampl itude (AMP) as well as action potential area (AREA) of group E were bigger than those of groups B, C and D (P lt; 0.05). At 24 weeks after the operation, NCV, AMP and AREA of group E were bigger than those of groups B and C (Plt; 0.05). At 12 weeks after the operation, histological observation showed the area of regenerated nerves and the number of myel inated fibers in group E were significantly differents from those in groups A, B and C (Plt; 0.05). The density and diameter of myel inated fibers in group E were smaller than those in group A (Plt; 0.05), but bigger than those in groups B, C and D (P lt; 0.05). At 24 weeks after the operation, the area of regenerative nerves in group E is bigger than those in group B (P lt; 0.05); the number of myel inated fibers in group E was significantly different from those in groups A, B, C (P lt; 0.05); and the density and diameter of myel inated fibers in group E were bigger than those in groups B and C (Plt; 0.05). Conclusion The tissue engineered nerve with the complex of SCs, ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeables PDLLA catheters promote nerve regeneration and has similar effect to autograft in repair of nerve defects.
Objective To investigate the performance of loading naringin composite scaffolds and its effects on repair of osteochondral defects. Methods The loading naringin and unloading naringin sustained release microspheres were prepared by W/O/W method; with the materials of the attpulgite and the collagen type I, the loading naringin, unloading naringin, and loading transforming growth factor β1 (TGF-β1) osteochondral composite scaffolds were constructed respectively by " 3 layers sandwich method”. The effect of sustained-release of loading naringin microspheres, the morphology of the composite scaffolds, and the biocompatibility were evaluated respectively by releasingin vitro, scanning electron microscope, and cell counting kit 8. Forty Japanese white rabbits were randomly divided into groups A, B, C, and D, 10 rabbits each group. After a osteochondral defect of 4.5 mm in diameter and 4 mm in depth was made in the intercondylar fossa of two femurs. Defect was not repaired in group A (blank control), and defect was repaired with unloading naringin composite scaffolds (negative control group), loading naringin composite scaffolds (experimental group), and loading TGF-β1 composite scaffolds (positive control group) in groups B, C, and D respectively. At 3 and 6 months after repair, the intercondylar fossa was harvested for the general, HE staining, and toluidine blue staining to observe the repair effect. Western blot was used to detect the expression of collagen type II in the new cartilage. Results Loading naringin microspheres had good effect of sustained-release; the osteochondral composite scaffolds had good porosity; the cell proliferation rate on loading naringin composite scaffold was increased significantly when compared with unloading naringin scaffold (P<0.05). General observation revealed that defect range of groups C and D was reduced significantly when compared with groups A and B at 3 months after repair; at 6 months after repair, defects of group C were covered by new cartilage, and new cartilage well integrated with the adjacent cartilage in group D. The results of histological staining revealed that defects were filled with a small amount of fibrous tissue in groups A and B, and a small amount of new cartilage in groups C and D at 3 months after repair; new cartilage of groups C and D was similar to normal cartilage, but defects were filled with a large amount of fibrous tissue in groups A and B at 6 months after repair. The expression of collagen type II in groups C and D was significantly higher than that in groups A and B (P<0.05), but no significant difference was found between groups C and D (P>0.05). Conclusion Loading naringin composite scaffolds have good biocompatibility and effect in repair of rabbit articular osteochondral defects.