ObjectiveTo investigate the regulatory mechanism of thioredoxin binding protein (TXNIP)/nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) pathway in the occurrence and development of breast cancer.MethodsThe resected 15 cases of breast cancer tissues and their adjacent tissues in our hospital from September 2019 to June 2020 were selected, and the immunohistochemistry was used to detect the expression levels of TXNIP and NLRP3 in breast cancer and its adjacent tissues. Three kinds of breast cancer cell lines (MDA-MB231, MCF-7 and SKBR3) and normal breast epithelial cell line (HMEC) were collected. Western blot was used to detect the relative expression levels of TXNIP and NLRP3 in three kinds of breast cancer cell lines and HMEC cell line. MDA-MB231 cancer cells were divided into blank control group (normal culture without any treatment), TXNIP overexpression group (Ad-TXNIP group, transfected with adenovirus vector carrying TXNIP overexpression sequence), Ad-TXNIP negative control group (Ad-eGFP1 group, transfected of empty adenovirus vector without TXNIP overexpression sequence), NLRP3 overexpression group (Ad-NLRP3 group, transfected with adenovirus vector containing NLRP3 overexpression sequence), TXNIP and NLRP3 overexpression co-transfection group (Ad-TXNIP+Ad-NLRP3 group, co-transfection of adenovirus vector carrying TXNIP and NLRP3 overexpression sequence), TXNIP overexpression and Ad-NLRP3 negative control (Ad-eGFP2) co-transfection group (Ad-TXNIP+Ad-eGFP2 group,co-transfection of adenovirus vector carrying TXNIP overexpression sequence and empty adenovirus without NLRP3 overexpression sequence). After 24 hours of transfection and culture, CCK-8 method was used to detect the MDA-MB231 cells proliferation. Transwell chamber method was used to detect MDA-MB231 cells migration and invasion. Nude mice tumorigenicity test was used to detect the tumorigenicity of the MDA-MB231 cells in vivo. Western blot was used to detect the expressions of TXNIP, NLRP3, proliferation marker protein (Ki-67), caspase-1, vascular endothelial growth factor (VEGF), interleukin (IL)-1β, IL-18 and caspase-1 precursor protein (pro-caspase-1) in the MDA-MB231 cells.ResultsCompared with the adjacent tissues, the relative expression level of TXNIP decreased (P<0.05) and the relative expression level of NLRP3 increased (P<0.05) in breast cancer tissues. Compared with normal breast epithelial cell line (HMEC cell line), the relative expression levels of TXNIP in MDA-MB231, MCF-7 and SKBR3 breast cancer cell lines were decreased (P<0.05), and the relative expression levels of NLRP3 were increased (P<0.05). Compared with the blank control group, the relative expression levels of TXNIP, NLRP3, IL-1β, IL-18, pro-caspase-1 and caspase-1 were increased (P<0.05), the relative expression levels of Ki-67 and VEGF, the proliferation activity, invasion and migration ability of MDA-MB231 cells and tumor weight were decreased (P<0.05) in the Ad-TXNIP group and the Ad-NLRP3 group. Compared with the Ad-TXNIP group and the Ad-NLRP3 group, the relative expression levels of TXNIP, NLRP3, IL-1β, IL-18, pro-caspase-1 and caspase-1 were further increased (P<0.05), the relative expression levels of Ki-67 and VEGF, the proliferation activity, invasion and migration ability of MDA-MB231 cells and tumor weight were further decreased (P<0.05) in the Ad-TXNIP+Ad-NLRP3 group.ConclusionsIn breast cancer tissues and breast cancer cell lines, TXNIP is low expression and NLRP3 is high expression. They can interact with each other to promote pyroptosis and inhibit the proliferation, invasion and migration of breast cancer cells.
Objective To investigate the effect of monocyte chemoattractant protein 1 (MCP-1) on the migration of the induced and differentiated mouse bone marrow mesenchymal stem cells (BMSCs) for raising the efficacy of intravenous transplantation of BMSCs. Methods The BMSCs were cultured with the method of differential adhesion and density gradient centrifugation of C57/BL10 mice, and were identified by alkal ine phosphatase Gomori modified staining after osteogenic inducing. At the 3rd passage, the BMSCs were induced to the myoblasts with 5-azacytidine (5-Aza). The chemotaxis of MCP-1 in the induced and differentiated BMSCs in vitro at concentrations of 25, 50, 100, 200, and 400 ng/mL was observed through the migration test, by counting the number of the migrated cells. The expression of the chemokine receptor 2 (CKR-2) in the induced and differentiated BMSCs was detected with the flow cytometry. Results The cells could be cultured with the methods of differential adhesion and density gradient centrifugation and still had higher prol iferative and differentiative potency; the induced cells at the 3rd passage could differenciate to the osteoblasts, confirming that the cells were BMSCs; the myogenic induced BMSCs possesed the sarcotubule structure. The number of the migrating BMSCs at MCP-1 concentrations of 25-400 ng/ mL were respectively 35.066 7 ± 6.584 2, 43.200 0 ± 6.460 8, 44.466 7 ± 4.823 5, 45.600 0 ± 8.650 3, and 50.733 3 ± 7.582 5; showing significant difference when compared with control group (28.333 3 ± 8.917 6, P lt; 0.05), and presenting significant difference among 25, 50, 400 ng/mL groups compared with each other (P lt; 0.05). The expression of CKR-2 in the mouse BMSCs (48.0%) was significantly higher (P lt; 0.001) than those of blank control (0.6%) and negative control (17.0%). Conclusion The results indicate that the MCP-1 can induce the migration of mouse BMSCs by MCP-1/CKR-2 pathway.
ObjectiveTo observe the effects of aquaporin 1 (AQP1) on the proliferation and migration of endothelial progenitor-endothelial progenitor cells (EPC).MethodsBone marrow cells of AQP1 wild-type (WT) (n=6) and knockout-type (KO) mice (n=6) were isolated and differentiated into EPC in vitro. Immunofluorescence was used to detect cell surface antigens to identify EPC. Live cell kinetic imaging and quantification technology, transwell migration assays, as well as scratch test were used to compare the function of EPC between AQP1 WT and KO mice.ResultsEPC culture showed that cells were initially suspended and gradually adhered to typical mesenchymal stem cells within 7 days. After cultured on special medium for endothelial cells they were adhered and differentiated, and fusiform or polygonal, paving stone-like EPC were observed around 14 days. When cultured by special medium of EPC, CD133 and CD31 were positively detected after 7 days, and CD34 and Flk-1 were positively detected after 14 days. Positive expression of AQP1 was only detected in EPC of AQP1 WT mice. Functional studies of EPC revealed there was no significant difference in the proliferation of EPC between AQP1 WT and KO group mice. Transwell assay showed that EPC migration ability of AQP1 KO mice was significantly weaker than that of WT mice. The scratch healing ability of EPC in AQP1 KO mice was significantly lower than that of WT mice.ConclusionsEPC initially shows the characteristics of stem cells and with the prolongation of culture time, EPC gradually shows the characteristics of endothelial cells. AQP1 affects the EPC migration rather than proliferation.
ObjectiveTo investigate the effects of thrombospondin-1 active fragment (TSP-1) synthetical peptide VR-10 on proliferation and migration of rhesus choroidal-retinal endothelial (RF/6A) cell and the expressions of apoptosis relative genes in RF/6A cell.
MethodsThe survival rate of RF/6A cell were detected by methyl thiazolyl tetrazolium, and migration ability was measured by transwell chamber after exposure to 1.0 μg/ml TSP-1 and synthetic peptide VR-10 (0.1, 1.0, 10.0 μg/ml) for different times (6, 12, 24, 48 hours). Caspase-3 and factor associated suicide (FAS) protein levels were measured by Western blot. The mRNA level of bcl-2 and FAS ligand (FASL) were measured by reverse transcription-polymerase chain reaction (RT-PCR).
ResultsThe survival rate of RF/6A cells was determined by the treatment time and concentration of TSP-1(1.0 μg/ml) and the synthetic peptide VR-10 (0.1, 1.0, 10.0 μg/ml). The lowest survival ratio of RF/6A was 78% (P < 0.001) when cells were treated by 10 μg/ml synthetic peptide VR-10 after 48 hours. TSP-1 and synthetic peptide VR-10 could inhibit migration of RF/6A cells in transwell chamber (P < 0.001). 10.0 μg/ml synthetic peptide VR-10 had the strongest effect, 1.0 μg/ml TSP-1 was the next. Migration inhibition rate was increase with the increase of the concentration of VR-10 (P < 0.001). There was no significant differences between 0.1 μg/ml and 1.0 μg/ml VR-10 (P=0.114). Western bolt showed that RF/6A cell in control group mainly expressed the 32×103 procaspase-3 forms. To 10.0 μg/ml VR-10 treated group, it showed decreased expression of procaspase-3 (32×103) and concomitant increased expression of its shorter proapoptotic forms (20×103). Compared with control group, expression of FAS peptides were significantly increased in 10.0 μg/ml VR-10 treated group. Compared with control group, expression of FasL mRNA was significantly increased in 10.0 μg/ml VR-10 treated group(t=39.365, P=0.001), but the expression of bcl-2 mRNA was decreased(t=-67.419, P=0.000).
ConclusionTSP-1 and synthetic peptide VR-10 had the ability to inhibit proliferation and migration of endothelial cell, and also induce apoptosis by increasing FAS/FASL expression and repressing bcl-2 expression.
Objective To observe the effect of Nodal on the biological behavior of retinal vascular endothelial cells (RF/6A cells) in monkeys with high glucose. MethodsRF/6A cells were divided into normal group, mannitol group, high glucose group, high glucose combined with non-specific small interfering RNA treatment group (HG+NC group), high glucose combined with small interfering Nodal treatment group (HG+siNodal group). The transfection efficiency of siNodal was observed by real-time fluorescence quantitative PCR and western blot protein immunoblotting. The effect of Nodal on the proliferation of RF/6A cells was detected by thiazole blue colorimetry. The effect of Nodal on migration ability of RF/6A cells was detected by cell scratch assay. The effect of Nodal on the formation of RF/6A cell lumen was measured by Matrigel three-dimensional in vitro. The expression of extracellular signal phosphorylated regulated kinase 1/2 (pERK1/2) in RF/6A cells was detected by western blot protein immunoblotting. One-way analysis of variance was used to compare groups. ResultsCompared with HG+NC group, Nodal protein (F=33.469) and mRNA relative expression levels (F=38.191) in HG+siNodal group were significantly decreased, cell proliferation was significantly decreased (F=28.548), and cell migration ability was significantly decreased (F=24.182). The number of cell lumen formation was significantly decreased (F=52.643), and the differences were statistically significant (P<0.05). Compared with HG+NC group, the relative expression of pERK1/2 protein in HG+siNodal group was significantly decreased, and the difference was statistically significant (F=44.462, P<0.01). ConclusionsSilencing Nodal expression can inhibit proliferation, migration and tube formation of RF/6A cells induced by high glucose. It may act by inhibiting pERK1/2 expression.
Objective To explore the effects of calcitonin gene-related peptide (CGRP) on the migration of bone marrow mesenchymal stem cells (BMSCs) and vascular endothel ial growth factor (VEGF) expression in vitro. Methods TheBMSCs were isolated from Sprague Dawley rats using whole bone marrow adherence method. At 1, 2, and 3 weeks after culture, the expressions of CGRP receptor (CGRPR) was detected by Western blot. The BMSCs were treated with CGRP at concentration 1 × 10-8 mol/L (experimental group) and did not treated (control group), and the efficacy of BMSCs migration was analyzed by Transwell chamber assay after 72 hours; at 1, 3, 5, and 7 days, the mRNA expressions of vascular cell adhesion molecule 1 (VCAM-1) were detected by real-time fluorescent quantitative PCR; the protein expressions of VEGF were examined using immunohistochemistry and Western blot. Results CGRPR expressed stably in the cultured BMSCs and reached the peak at 2 weeks. CGRP had a significantly enhanced role in promoting cell migration. The number of cell migration was (3.20 ± 1.77) cells/HP in experimental group and (1.11 ± 0.49) cells/HP in control group, showing significant difference (t=4.230, P=0.001). In experimental group, the expressions of VCAM-1 mRNA increased with time and reached the peak at 7 days. There were significant differences in the expressions of VCAM-1 mRNA between control group and experimental group at 3, 5, and 7 days (P lt; 0.05). Immunocytochemistry results showed positive DAB staining for VEGF at 5 and 7 days in experimental group. Western blot results showed that the protein expressions of VEGF increased significantly at 5 and 7 days in experimental group when compared with control group (P lt; 0.05), which was signfiantly higher at 5 days than at 7 days in experimental group (P lt; 0.05). Conclusion CGRP can promote the migration of BMSCs and stimulate the protein expression of VEGF, which may plays an important role in regulating bone metabol ism by increasing angiogenesis.
Objective
To explore the effects of Zhaoke defibrase and anti alpha;vbeta;3mAb (23C6) on the adhesion and immigration of bovine retinal vascular endothelial cells.
Methods
The culture dishes coated with vitronectin (Vn) and collagen,assays of adhesion and immigration were performed 60 minutes after different concentration of Zhaoke defibrase and anti-alpha;vbeta;3 mAb was added to the bovine retinal vascular endothelial cells. The apoptosis of bovine retinal vascular endothelial cells induced by Zhaoke defibrase and anti-alpha;vbeta;3 mAb was detected by electron microscopy.
Results
Both Zhaoke defibrase and anti-alpha;vbeta;3 mAb inhibited the adhesion and immigration of bovine retinal vascular endothelial cells in a dose-dependent manner. The inhibited concentration (IC50) of Zhaoke defibrase was less than 0.05 mu;mol/L, while (IC50) of anti-alpha;vbeta;3 mAb was more than 2.5 mu;mol/L. 81.8% endothelial cells adhering to Vn were inhibited by 0.1 mu;mol/L Zhaoke defibrase, while 76.3% by endothelial cells adhering to Vn were inhibited by 10 mu;mol/L anti-alpha;vbeta;3 mAb. Typical apoptosis cells were found in bovine retinal vascular endothelial cells after affected by Zhaoke defibrase and anti-alpha;vbeta;3 mAb.
Conclusion
Both Zhaoke defibrase and anti- alpha;vbeta;3mAb can significantly inhibit the adhesion and immigration of bovine retinal vascular endothelial cells to extracellular matrix, and the mechanism may lie in inducing the apoptosis of endothelial cells.
(Chin J Ocul Fundus Dis, 2005,21:118-121)
Objective To investigate the evaluation value of serum interleukin-34 (IL-34), macrophage migration inhibitor (MIF), osteopontin (OPN) and hypersensitive C-reactive protein (hs-CRP) in the diagnosis and prognosis of active pulmonary tuberculosis. Methods Clinical data of 100 patients with active pulmonary tuberculosis admitted from June 2019 to June 2022 were selected as an observation group and retrospectively analyzed. All patients received standardized anti-tuberculosis therapy for 6 months and were divided into a good prognosis group (76 cases) and a poor prognosis group (24 cases) according to the prognosis. Another 80 healthy volunteers who underwent physical examination during the same period were selected as the control group. Serum levels of IL-34, MIF, OPN and hs-CRP were detected in each group, and the value of serum IL-34, MIF, OPN and hs-CRP in the diagnosis and prognosis of active pulmonary tuberculosis was analyzed by receiver operating characteristic curve (ROC curve). Results Serum levels of IL-34, MIF, OPN and hs-CRP in the observation group were higher than those in the control group (all P<0.05). ROC curve showed that serum IL-34, MIF, OPN, hs-CRP had a certain diagnostic value in active pulmonary tuberculosis, with area under ROC curve (AUC) of 0.864, 0.870, 0.865, and 0.880, respectively (all P<0.01), and the combination of the four indexes had a higher diagnostic value (AUC=0.902, P<0.01). Serum levels of IL-34, MIF, OPN and hs-CRP in the good prognosis group were lower than those in the poor prognosis group (all P<0.05). ROC curve showed that serum IL-34, MIF, OPN, hs-CRP had a certain value in evaluating the prognosis of active pulmonary tuberculosis, with AUC of 0.850, 0.874, 0.837, and 0.842, respectively (all P<0.01), and the combined value of the four indexes was higher (AUC=0.923, P<0.01). Conclusion The combined detection of serum IL-34, MIF, OPN and hs-CRP has high value in the diagnosis and prognosis assessment of active pulmonary tuberculosis.
ObjectiveTo investigate the effects of overexpression of alpha/beta hydrolase domain-containing protein 5 (ABHD5) on the invasion and migration of human colon cancer cell line HCT116 and the pathway of adenosine monophosphate-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR).MethodsThe expression of ABHD5 in colon cancer tissues and its relationship with clinicopathological features was analyzed by UALCAN database. HCT116 cells were cultured in vitro and transfected with ABHD5 recombinant plasmid, then they were divided into control group, negative transfection group and ABHD5 transfection group. Real time quantitative PCR (qRT-PCR) was used to detect the expression of ABHD5 mRNA in HCT116 cells. The proliferation of HCT116 cells was detected by CCK-8 method. Transwell assay was used to detect the invasion and migration of HCT116 cells. The expression of matrix metalloprotein 9 (MMP-9), E-cadherin, Snail, and AMPK/mTOR pathway proteins p-AMPK, AMPK, p-mTOR and mTOR were detected by Western blot.ResultsThe results of the UALCAN showed that compared with normal colon tissues, the expression of ABHD5 mRNA in colon cancer tissues was decreased (P<0.05), and which in the adenocarcinoma and the N1 stage was lower than that of the mucinous adenocarcinoma (P<0.05) and N0 stage (P<0.05), respectively. Compared with the control group and the negative transfection group, the expression of ABHD5 mRNA in the ABHD5 transfection group was increased (P<0.05), the proliferation inhibition rate of HCT116 cells in the ABHD5 transfection group was increased (P<0.05), the numbers of migration and invasion cells in the ABHD5 transfection group were decreased (P<0.05), the expressions of MMP-9, Snail, p-mTOR and mTOR were reduced, and the expressions of E-cadherin, p-AMPK and AMPK were increased (P<0.05).ConclusionsThe overexpression of ABHD5 can inhibit the invasion and migration of colon cancer HCT116 cells, activate AMPK, and inhibit the expression of mTOR. It suggests that ABHD5 may play a role in inhibiting colon cancer by affecting AMPK/mTOR pathway.
Lysophosphatidic acid (LPA) is a pluripotent lipid mediator and acts via different G-protein-couple LPA receptors. LPA has significant effects on several cellular biological behaviours, such as cell migration, invasion, proliferation and differentiation, etc. Cell migration is essential for tumor progression, and vital for stem cell to repair injured tissues. Increasing evidences have demonstrated that LPA dramatically affects migration capacity of various cells, particularly cancer cells and stem cells. In this paper, we review the effect of LPA on migration of cancer cells and stem cells, and discuss the underlying mechanisms. A better understanding of this process will shed new light on tissue regeneration and the prevention of tumor progression.