The therapeutic effect of anti-vascular endothelial growth factor (VEGF) for neovascular age-related macular degeneration (nAMD) was determined by a number of factors. Comprehensive thorough analysis of clinical features, imaging results and treatment response can predict the potential efficacy and possible vision recovery for the patient, and also can optimize the treatment regime to make a personalized therapy plan. Precise medicine with data from genomics, proteomics and metabolomics study will provide more objective and accurate biology basis for individual precise treatment. The future research should focus on comprehensive assessment of factors affecting the efficacy of anti-VEGF therapy, to achieve individualized precise diagnosis and treatment, to improve the therapeutic outcome of nAMD.
Objective To study and compare the clinical efficacy between intravitreal conbercept injection and (or) macular grid pattern photocoagulation in treating macular edema secondary to non-ischemic branch retinal vein occlusion (BRVO). Methods Ninety eyes of 90 patients diagnosed as macular edema secondary to non-ischemic BRVO were enrolled in this study. Forty-eight patients (48 eyes) were male and 42 patients (42 eyes) were female. The average age was (51.25±12.24) years and the course was 5–17 days. All patients were given best corrected visual acuity (BCVA), intraocular pressure, slit lamp with preset lens, fluorescence fundus angiography (FFA) and optic coherent tomography (OCT) examination. The patients were divided into conbercept and laser group (group Ⅰ), laser group (group Ⅱ) and conbercept group (group Ⅲ), with 30 eyes in each group. The BCVA and central macular thickness (CMT) in the three groups at baseline were statistically no difference (F=0.072, 0.286;P=0.930, 0.752). Patients in group Ⅰ received intravitreal injection of 0.05 ml of 10.00 mg/ml conbercept solution (conbercept 0.5 mg), and macular grid pattern photocoagulation 3 days later. Group Ⅱ patients were given macular grid pattern photocoagulation. Times of injection between group Ⅰ and Ⅲ, laser energy between group Ⅰ and Ⅱ, changes of BCVA and CMT among 3 groups at 1 week, 1 month, 3 months and 6 months after treatment were compared. Results Patients in group Ⅰ and Ⅲ had received conbercept injections (1.20±0.41) and (2.23±1.04) times respectively, and 6 eyes (group Ⅰ) and 22 eyes (group Ⅲ) received 2-4 times re-injections. The difference of injection times between two groups was significant (P<0.001). Patients in group Ⅱ had received photocoagulation (1.43±0.63) times, 9 eyes had received twice photocoagulation and 2 eyes had received 3 times of photocoagulation. The average laser energy was (96.05±2.34) μV in group Ⅰ and (117.41±6.85) μV in group Ⅱ, the difference was statistical significant (P=0.003). BCVA improved in all three groups at last follow-up. However, the final visual acuity in group Ⅰ and group Ⅲ were better than in group Ⅱ (t=4.607, –4.603;P<0.001) and there is no statistical significant difference between group Ⅲ and group Ⅰ (t=–0.802,P=0.429). The mean CMT reduced in all three groups after treating for 1 week and 1 month, comparing that before treatment (t=–11.855, –10.620, –10.254;P<0.001). There was no statistical difference of CMT between group Ⅰand Ⅲ at each follow up (t=0.404, 1.723, –1.819, –1.755;P=0.689, 0.096, 0.079, 0.900). CMT reduction in group Ⅰ was more than that in group Ⅱ at 1 week and 1 month after treatments (t=–4.621, –3.230;P<0.001, 0.003). The CMT in group Ⅲ at 3 month after treatment had increased slightly comparing that at 1 month, but the difference was not statistically significant (t=1.995,P=0.056). All patients had no treatment-related complications, such as endophthalmitis, rubeosis iridis and retinal detachment. Conclusions Intravitreal conbercept injection combined with macular grid pattern photocoagulation is better than macular grid pattern photocoagulation alone in treating macular edema secondary to non-ischemic BRVO. Combined therapy also reduced injection times comparing to treatment using conbercept injection without laser photocoagulation.
Diabetic macular ischemia (DMI) is one of the manifestation of diabetic retinopathy (DR). It could be associated with diabetic macular edema (DME), which may affect the vision of DR patients. FFA is the gold standard for the diagnosis of DMI, but with the advent of OCT angiography, a more convenient and diversified method for the evaluation of DMI has been developed, which makes more and more researchers start to study DMI. Intravitreal injection of anti-VEGF has become the preferred treatment for DME. When treating with DME patients, ophthalmologists usually avoid DMI patients. But if intravitreal anti-VEGF should be the contradiction of DME is still unclear. To provide references to the research, this article summarized the risk factors, assessment methods and influence of DMI. This article also analyzed the existing studies, aiming to offer evidences to a more reasonable and effective treatment decision for DME individual.
The therapeutic response of anti-vascular endothelial growth factor (VEGF) differs among individuals. According to the changes of central retinal thickness, intraretinal fluid, subretinal fluid, best corrected visual acuity and other morphological or functional manifestations after treatment, the performance of the treated eyes can be classified as optimal response, poor response and non-response. A variety of factors could account for poor or non-response to anti-VEGF, such as genomic polymorphism and specific genomic risk alleles, lesion characteristics, vitreous and macular structural abnormalities, resistance to anti-VEGF drug, and the role of pericytes and others. The common counter measures include increasing the dosage, shortening the injection interval and replacing with another alternative drug, inhibition of pericytes, relieving vitreomacular anatomical abnormalities. It is still worthy of further exploration that how to assess individual reasons for non-response, so that we can give proper treatment to reduce the excessive use of anti-VEGF drugs and improve the clinical management of ocular neovascularization diseases.
Objective To observe the baseline characteristics and visual outcomes after two years follow-up of exudative age-related macular degeneration (AMD) patients treated with ranibizumb. Methods Forty-four eyes of 44 patients with exudative AMD were enrolled into this retrospective study, 19 were men and 25 were women. The mean age was 78 years (range 64 – 92 years). All patients were underwent best corrected visual acuity (BCVA, Early Treatment of Diabetic Retinopathy Study), fundus color photography, fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA) and optical coherence tomography (OCT). The mean BCVA was (50.36±14.43) letters, the mean central foveal thickness (CFT) was (291.95±82.19) μm, and the fluorescence leakage area of choroidal neovascularization (CNV) was (7.61±5.84) mm2. All patients received three initial intravitreous injection of ranibizumb (IVR) and were retreated with monthly IVR when needed. The mean follow up time was 25.6 months (range 24 – 29 months). On 1, 2, 3, 6, 12, 18 and 24 months after treatment, BCVA and OCT were repeated. On 3, 6, 12, 18 and 24 months after treatment, FFA and ICGA were repeated. The change of BCVA, CFT and fluorescence leakage area of CNV were observed. The association of baseline characteristics and two year visual outcomes were analyzed. Results On 1, 2, 3, 6, 12, 18 and 24 months after treatment, the BCVA were improved significantly (t= ?1.89, ?3.51, ?4.61, ?4.04, ?5.77, ?4.69;P<0.05), the CFT were decreased significantly (t=1.51, 2.30, 3.40, 3.28, 3.54, 3.88, 3.73;P<0.05). On 3, 6, 12, 18 and 24 months after treatment, the fluorescence leakage area of CNV were reduced significantly (t=2.12, 2.90, 3.51, 4.12, 4.06;P<0.05). The lower baseline BCVA, the more improved after treatment. The BCVA improvement degree has a negative relationship with baseline BCVA and fluorescence leakage area of CNV (r=0.505, ?0.550;P<0.05), but no correlation with baseline CFT (r=0.210,P>0.05). Conclusion Two year visual outcomes of exudative AMD patients treated with ranibizumb is negative correlated with baseline BCVA and fluorescence leakage area of CNV, but not correlated with baseline CFT.
ObjectiveTo evaluate the macular visual function of patients with myopic choroidal neovascularization (MCNV) before and after intravitreal injection of conbercept.MethodsA prospective, uncontrolled and non-randomized study. From April 2017 to April 2018, 21 eyes of 21 patients diagnosed as MCNV in Shanxi Eye Hospital and treated with intravitreal injection of conbercept were included in this study. There were 9 males (9 eyes, 42.86%) and 12 females (12 eyes, 57.14%), with the mean age of 35.1±13.2 years. The mean diopter was ?11.30±2.35 D and the mean axial length was 28.93±5.68 mm. All patients were treated with intravitreal injection of conbercept 0.05 ml (1+PRN). Regular follow-up was performed before and after treatment, and BCVA and MAIA micro-field examination were performed at each follow-up. BCVA, macular integrity index (MI), mean sensitivity (MS) and fixation status changes before and after treatment were comparatively analyzed. The fixation status was divided into three types: stable fixation, relatively unstable fixation, and unstable fixation. The paired-sample t-test was used to compare BCVA, MI and MS before and after treatment. The x2 test was used to compare the fixation status before and after treatment.ResultsDuring the observation period, the average number of injections was 3.5. The logMAR BCVA of the eyes before treatment and at 1, 3, and 6 months after treatment were 0.87±0.32, 0.68±0.23, 0.52±0.17, and 0.61±0.57, respectively; MI were 89.38±21.34, 88.87±17.91, 70.59±30.02, and 86.76±15.09, respectively; MS were 15.32±7.19, 21.35±8.89, 23.98±11.12, 22.32±9.04 dB, respectively. Compared with before treatment, BCVA (t=15.32, 18.65, 17.38; P<0.01) and MS (t=4.08, 3.50, 4.26; P<0.01) were significantly increased in the eyes 1, 3, and 6 months after treatment. There was no significant difference in the MI of the eyes before treatment and at 1, 3, and 6 months after treatment (t=0.60, 2.42, 2.58; P>0.05). Before treatment and at 1, 3, and 6 months after treatment, the proportion of stable fixation were 28.57%, 38.10%, 38.10%, 33.33%;the proportion of relatively unstable fixation were 47.62%, 47.62%, 52.38%, 57.14% and the proportion of unstable fixation were 23.81%, 14.28%, 9.52%, 9.52%, respectively. The proportion of stable fixation and relatively unstable fixation at 1, 3 and 6 months after treatment were higher than that before treatment, but the difference was not statistically significant (x2=1.82, 1.24, 1.69; P>0.05).ConclusionBCVA and MS are significantly increased in patients with MCNV after intravitreal injection of conbercept.
Objective To observe the inhibitory effects and characteristics of intravitreal injection with bevacizumab on laser induced choroidal neovascularization (CNV).Methods Twelve male brown norway(BN)rats were divided into the bevacizumab group and control group with six rats in each group. One eye of rats were received a series of 8 diode laser esions around optic disc to induce CNV,then the rats in bevacizumab group and control group underwent intravitreal injection with 2 mu;l bevacizumab and ringer's lactate.On days 7,14,and 21,the morphology and leakage of CNV were observed by fundus fluorescein angiography (FFA) and indocyanine green angiography (ICGA).On day 21 after photocoagulation,the photocoagulated eyes were enucleated and processed for histopathologic examination, including hematoxylin and eosin (Hamp;E) staining and immunohistochemistry staining for vascular endothelial growth factor(VEGF).Results On day 7 after photocoagulation,ICGA showed that CNV developed in the bevacizumab group and the control group. FFA showed that leakage intensity in the bevacizumab group was significantly lower than that in the control group,but the bevacizumab group gradually increased over time. The mean thickness of CNV significantly decreased in the bevacizumab group.The CNV in the bevacizumab group were negative for VEGF according to the result of immmuohistochemistry staining.Conclusions Early intravitreal injection with 2 mu;l bevacizumab can reduce the thickness of CNV and inhibit the leakage of CNV. However, bevacizumab could neither block the formation of CNV, nor suppress the permeability permanently. Combined other therapies with bevacizumab may be more potential to treat CNV effectively.
ObjectiveTo evaluate the effects of intravitreal ranibizumab therapy for serous pigment epithelial detachment (sPED) secondary to exudative age-related macular degeneration(eAMD).
MethodsTwenty-three eyes from 23 patients of eAMD with sPED were enrolled in this study. The best corrected visual acuity, ocular coherence tomography (OCT), maximum PED height from baseline, volume of PED and central fovea thickness(CFT)were collected monthly for these patients. And the patients were receiced intravitreal injection with ranibizumab of 0.5 mg of three consecutive monthly injections.
ResultsNo complications were observed during the study period. After 6 months follow-up, 17 eyes improved, 4 eyes unchanged and only 2 eye decreased. The best corrected visual acuity was from 0.77±0.39 up to 0.61±0.27(t=2.601, P < 0.05). It was observed by OCT that the PED height was decreased from (357.2±171.9)μm (before treatment) to (247.7±171.7)μm (after treatment) (t=3.192, P < 0.05) and the volume of PED was decreased from(0.741±1.012) mm3 to (0.337±0.498) mm3 (t=2.502, P < 0.05). The central foveal thickness was decreased from (317.9±73.8)μm to (302.5±89.3)μm, but the difference were no statistically significantly (t=0.887, P > 0.05).
ConclusionRanibizumab may be an effective treatment for improving vision and reducing the degree of PED in eAMD patients.
Objective To observe the efficacy and safety of intravitreal injection of Ranibizumab(Lucentis) on exudative age-related macular degeneration (AMD). Methods To analyze retrospectively the clinical data of 56 patients with exudative AMD, which was diagnosed by examination of ETDRS charts, color fundus photograph, fluorescein angiography(FFA) or indocyanine green angiography(ICGA) and optical coherence tomography(OCT), were underwent intravitreal injection Lucentis 0.5 mg. Before the treatment, the ETDRS charts letter of 56 eyes was 25.1; choroidal neovascularization(CNA) was leaky which examined by FFA and ICGA; the average thickness of retina was 303.45 mu;m. Ranibizumab injection therapeutic times were 2.8, the average therapeutic times were 3.1. Follow-up time was 6-12 months (mean 8.7 months). Visual acuity (ETDRS charts letter), retinal thickness, leakage of CNV and operative complications before and after the treatment were analyzed. Results At the end of the follow-up period, the mean letter of ETDRS charts was 38.5, increased 13.4 letters (P<0.01), the ETDRS charts improved 15 or more letters in 22 eyes (39.3%), decreased more than 15 letters in 2 eyes (3.6%); the foveal thickness on OCT images were 303.45 mu;m before treatment and 191.35 mu;m a fter treatment, decreased significantly (P<0.00); FFA and/ or ICGA showed CNV complete closure in 12 eyes (21.4%), partial closure in 33 eyes (58.9%), no change in 9 eyes (16.1%) and new CNV in 1 eye (1.8%); Slight complications after operation disappeared during one week. Conclusion Intravitreal injection of Ranibizumab for exudative AMD was well tolerated, with an improvement in VA, FFA or ICGA , and OCT. (Chin J Ocul Fundus Dis,2008,24:160-163)
Anti-vascular endothelial growth factor (VEGF) drugs, including monoclonal antibodies (such as bevacizumab and ranibizumab) and fusion protein agents (such as aflibercept and conbercept) have been clinically proven to be effective to treat exudative age-related macular degeneration AMD). However, there are still some patients do not or poorly respond to the initial anti-VEGF agents, usually after several injections, ophthalmologists may switch to another anti-VEGF agent. In general, switching of anti-VEGF agent is considered for recurrent AMD, AMD resistance to anti-VEGF treatments. Current switching protocols include the replacement of monoclonal antibodies with fusion protein agents, the replacement of fusion protein agents with monoclonal antibodies, the substitution of one monoclonal antibody with another one, and the replacement of monoclonal antibodies with fusion protein agents and switching back with monoclonal antibodies. However, current researches on the switching of anti-VEGF drugs for exudative AMD are mostly retrospective and single-arm studies, and there are some differences in the results of different studies. Therefore, for patients with exudative AMD who do not respond to or respond poorly to anti-VEGF drugs, the efficacy of switching of anti-VEGF drugs is uncertain right now. Switching of anti-VEGF agents may improve the retinal anatomical outcome of the affected eye but may not necessarily improve visual acuity. Thus it is an option in the clinical practice to treat AMD. To determine the benefits of above mentioned switching regimens, randomized controlled clinical trials with large sample number and long study period will be needed.