1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "motor imagery" 21 results
        • Study on feature modulation of electroencephalogram induced by motor imagery under multi-modal stimulation

          Event-related desynchronization (ERD) is the basic feature of electroencephalogram (EEG), and the brain-computer interface based on motor imagery (MI-BCI) with the foundation of the analysis of ERD is of great significance in motor function recovery. The valid ERD characteristics extracted from EEG are the key to the performance of the BCI, so the study of which kind of stimulation mode can prompt subjects to generate more obvious characteristics of ERD is crucial. Four different stimulation modes are designed in this paper, and the effects of motion imagery tasks under static text stimulation, grip video stimulation, serial motion video stimulation of fingers as well as serial motion video stimulation of fingers with sound on the characteristics of ERD are analyzed. Combining the analysis of time-frequency spectrum, the power spectral density curve, ERD value and brain topographic map, it is shown that the ERD under serial motion video stimulation of fingers and serial motion video stimulation of fingers with sound modes is much stronger and has wider range of activation, and the BCI based on the analysis of ERD will have a better effect on practical application. As a result, the recognition and acceptance of the users of BCI system are improved in some extent.

          Release date:2018-08-23 03:47 Export PDF Favorites Scan
        • A Novel Channel Selection Method for Brain-computer Interface Based on Relief-SBS

          Regarding to the channel selection problem during the classification of electroencephalogram (EEG) signals, we proposed a novel method, Relief-SBS, in this paper. Firstly, the proposed method performed EEG channel selection by combining the principles of Relief and sequential backward selection (SBS) algorithms. And then correlation coefficient was used for classification of EEG signals. The selected channels that achieved optimal classification accuracy were considered as optimal channels. The data recorded from motor imagery task experiments were analyzed, and the results showed that the channels selected with our proposed method achieved excellent classification accuracy, and also outperformed other feature selection methods. In addition, the distribution of the optimal channels was proved to be consistent with the neurophysiological knowledge. This demonstrates the effectiveness of our method. It can be well concluded that our proposed method, Relief-SBS, provides a new way for channel selection.

          Release date: Export PDF Favorites Scan
        • Research on performance of motor-imagery-based brain-computer interface in different complexity of Chinese character patterns

          The traditional paradigm of motor-imagery-based brain-computer interface (BCI) is abstract, which cannot effectively guide users to modulate brain activity, thus limiting the activation degree of the sensorimotor cortex. It was found that the motor imagery task of Chinese characters writing was better accepted by users and helped guide them to modulate their sensorimotor rhythms. However, different Chinese characters have different writing complexity (number of strokes), and the effect of motor imagery tasks of Chinese characters with different writing complexity on the performance of motor-imagery-based BCI is still unclear. In this paper, a total of 12 healthy subjects were recruited for studying the effects of motor imagery tasks of Chinese characters with two different writing complexity (5 and 10 strokes) on the performance of motor-imagery-based BCI. The experimental results showed that, compared with Chinese characters with 5 strokes, motor imagery task of Chinese characters writing with 10 strokes obtained stronger sensorimotor rhythm and better recognition performance (P < 0.05). This study indicated that, appropriately increasing the complexity of the motor imagery task of Chinese characters writing can obtain stronger motor imagery potential and improve the recognition accuracy of motor-imagery-based BCI, which provides a reference for the design of the motor-imagery-based BCI paradigm in the future.

          Release date:2021-08-16 04:59 Export PDF Favorites Scan
        • Classifying Electroencephalogram Signal Using Under-determined Blind Source Separation and Common Spatial Pattern

          One of the key problems of brain-computer interfaces (BCI) is low signal-to-noise ratio (SNR) of electroencephalogram (EEG) signals. It affects recognition performance. To remove the artifact and noise, block under-determined blind source separation method based on the small number of channels is proposed in this paper. The non-stationary EEG signals are turned into block stationary signals by piecewise. The mixing matrix is estimated by the second-order under-determined blind mixing matrix identification. Then, the beamformer based on minimum mean square error separates the original sources of signals. Eventually, the reconstructed EEG for mixed signals removes the unwanted components of source signals to achieve suppressing artifact. The experiment results on the real motor imagery BCI indicated that the block under-determined blind source separation method could reconstruct signals and remove artifact effectively. The accuracy of motor imagery task of BCI has been greatly improved.

          Release date: Export PDF Favorites Scan
        • Research progress and prospect of collaborative brain-computer interface for group brain collaboration

          As the most common active brain-computer interaction paradigm, motor imagery brain-computer interface (MI-BCI) suffers from the bottleneck problems of small instruction set and low accuracy, and its information transmission rate (ITR) and practical application are severely limited. In this study, we designed 6-class imagination actions, collected electroencephalogram (EEG) signals from 19 subjects, and studied the effect of collaborative brain-computer interface (cBCI) collaboration strategy on MI-BCI classification performance, the effects of changes in different group sizes and fusion strategies on group multi-classification performance are compared. The results showed that the most suitable group size was 4 people, and the best fusion strategy was decision fusion. In this condition, the classification accuracy of the group reached 77%, which was higher than that of the feature fusion strategy under the same group size (77.31% vs. 56.34%), and was significantly higher than that of the average single user (77.31% vs. 44.90%). The research in this paper proves that the cBCI collaboration strategy can effectively improve the MI-BCI classification performance, which lays the foundation for MI-cBCI research and its future application.

          Release date:2021-08-16 04:59 Export PDF Favorites Scan
        • Channel Selection for Multi-class Motor Imagery Based on Common Spatial Pattern

          High-density channels are often used to acquire electroencephalogram (EEG) spatial information in different cortical regions of the brain in brain-computer interface (BCI) systems. However, applying excessive channels is inconvenient for signal acquisition, and it may bring artifacts. To avoid these defects, the common spatial pattern (CSP) algorithm was used for channel selection and a selection criteria based on norm-2 is proposed in this paper. The channels with the highest M scores were selected for the purpose of using fewer channels to acquire similar rate with high density channels. The DatasetⅢa from BCI competition 2005 were used for comparing the classification accuracies of three motor imagery between whole channels and the selected channels with the present proposed method. The experimental results showed that the classification accuracies of three subjects using the 20 channels selected with the present method were all higher than the classification accuracies using all 60 channels, which convinced that our method could be more effective and useful.

          Release date: Export PDF Favorites Scan
        • Recognition of three different imagined movement of the right foot based on functional near-infrared spectroscopy

          Brain-computer interface (BCI) based on functional near-infrared spectroscopy (fNIRS) is a new-type human-computer interaction technique. To explore the separability of fNIRS signals in different motor imageries on the single limb, the study measured the fNIRS signals of 15 subjects (amateur football fans) during three different motor imageries of the right foot (passing, stopping and shooting). And the correlation coefficient of the HbO signal during different motor imageries was extracted as features for the input of a three-classification model based on support vector machines. The results found that the classification accuracy of the three motor imageries of the right foot was 78.89%±6.161%. The classification accuracy of the two-classification of motor imageries of the right foot, that is, passing and stopping, passing and shooting, and stopping and shooting was 85.17%±4.768%, 82.33%±6.011%, and 89.33%±6.713%, respectively. The results demonstrate that the fNIRS of different motor imageries of the single limb is separable, which is expected to add new control commands to fNIRS-BCI and also provide a new option for rehabilitation training and control peripherals for unilateral stroke patients. Besides, the study also confirms that the correlation coefficient can be used as an effective feature to classify different motor imageries.

          Release date:2020-06-28 07:05 Export PDF Favorites Scan
        • An empirical study on the behavior of motor imagery based on mental rotation

          Mental rotation cognitive tasks based on motor imagery (MI) have excellent predictability for individual’s motor imagery ability. In order to explore the relationship between motor imagery and behavioral data, in this study, we asked 10 right-handed male subjects to participate in the experiments of mental rotation tasks based on corresponding body parts pictures, and we therefore obtained the behavioral effects according to their reaction time (RT) and accuracy (ACC). Later on, we performed Pearson correlation analysis between the behavioral data and the scores of the Movement Imagery Questionnaire-Revised(MIQ-R). For each subject, the results showed significant angular and body location effect in the process of mental rotation. For all subjects, the results showed that there were correlations between the behavioral data and the scores of MIQ-R. Subjects who needed the longer reaction time represented lower motor imagery abilities in the same test, and vice versa. This research laid the foundation for the further study on brain electrophysiology in the process of mental rotation based on MI.

          Release date:2017-04-13 10:03 Export PDF Favorites Scan
        • Research advancements of motor imagery for motor function recovery after stroke

          Neurological damage caused by stroke is one of the main causes of motor dysfunction in patients, which brings great spiritual and economic burdens for society and families. Motor imagery is an important assisting method for the rehabilitation of patients after stroke, which is easy to learn with low cost and has great significance in improving the motor function and the quality of patient's life. This paper mainly summarizes the positive effects of motor imagery on post-stroke rehabilitation, outlines the physiological performance and theoretical model of motor imagery, the influencing factors of motor imagery, the scoring criteria of motor imagery and analyzes the shortcomings such as the few kinds of experimental subject, the subjective evaluation method and the low resolution of the experimental equipment in the process of rehabilitation of motor function in post-stroke patients. It is hopeful that patients with stroke will be more scientifically and effectively using motor imagery therapy.

          Release date:2020-04-18 10:01 Export PDF Favorites Scan
        • Pretreatment Research Based on Left and Right Hand Motor Imagery for Single-channel Electroencephalogram

          Most of electroencephalogram (EEG) acquired by multi-channels is difficult to be applied to the single-channel brain-computer interface (BCI) in the EEG analysis method based on left and right hand motor imagery. The present research applied an improved independent component analysis (ICA) method to realize pretreatment of the EEG effectively. Firstly, data drift was removed through linear drift correction. Secondly, the number of virtual channels were increased by applying delayed window data and some EEG artifacts which are namely electrooculogram (EOG) and electrocardiogram (ECG) were removed by ICA. Finally, the average instantaneous energy characteristics were calculated and classified through the instantaneous amplitude which was solved by applying Hilbert-Huang transform (HHT). The experiment proves that the method completes the EEG pretreatment and improves classification ratio of single-channel EEG, and lays a foundation of single-channel and portable BCI.

          Release date:2016-10-24 01:24 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品