Breast cancer is a malignancy caused by the abnormal proliferation of breast epithelial cells, predominantly affecting female patients, and it is commonly diagnosed using histopathological images. Currently, deep learning techniques have made significant breakthroughs in medical image processing, outperforming traditional detection methods in breast cancer pathology classification tasks. This paper first reviewed the advances in applying deep learning to breast pathology images, focusing on three key areas: multi-scale feature extraction, cellular feature analysis, and classification. Next, it summarized the advantages of multimodal data fusion methods for breast pathology images. Finally, the study discussed the challenges and future prospects of deep learning in breast cancer pathology image diagnosis, providing important guidance for advancing the use of deep learning in breast diagnosis.
Multi-layer perceptron (MLP) neural network belongs to multi-layer feedforward neural network, and has the ability and characteristics of high intelligence. It can realize the complex nonlinear mapping by its own learning through the network. Bipolar disorder is a serious mental illness with high recurrence rate, high self-harm rate and high suicide rate. Most of the onset of the bipolar disorder starts with depressive episode, which can be easily misdiagnosed as unipolar depression and lead to a delayed treatment so as to influence the prognosis. The early identification of bipolar disorder is of great importance for patients with bipolar disorder. Due to the fact that the process of early identification of bipolar disorder is nonlinear, we in this paper discuss the MLP neural network application in early identification of bipolar disorder. This study covered 250 cases, including 143 cases with recurrent depression and 107 cases with bipolar disorder, and clinical features were statistically analyzed between the two groups. A total of 42 variables with significant differences were screened as the input variables of the neural network. Part of the samples were randomly selected as the learning sample, and the other as the test sample. By choosing different neural network structures, all results of the identification of bipolar disorder were relatively good, which showed that MLP neural network could be used in the early identification of bipolar disorder.
Objective To establish a machine learning-based risk prediction model of combined chronic obstructive pulmonary disease (COPD) with lung cancer, so as to explore the high risk factors for COPD patients with lung cancer and to lay the foundation for early detection of lung cancer risk in COPD patients. Methods A total of 154 patients from the Second Hospital of Dalian Medical University from 2010 to 2021 were retrospectively analyzed, including 99 patients in the COPD group and 55 patients in the COPD with lung cancer group. the chest high resolution computed tomography (HRCT) scans and pulmonary function test of each patient were acquired. The main analyses were as follow: (1) to valid the statistically differences of the basic information (such as age, body mass index, smoking index), laboratory test results, pulmonary function parameters and quantitative parameters of chest HRCT between the two groups; (2) to analyze the indicators of high risk factors for lung cancer in COPD patients using univariate and binary logistic regression (LR) methods; and (3) to establish the machine learning model (such as LR and Gaussian process) for COPD with lung cancer patients. Results Based on the statistical analysis and LR methods, decreased BMI, increased whole lung emphysema index, increased whole lung mean density, and increased percentage activity of exertional spirometry and prothrombin time were risk factors for COPD with lung cancer patients. Based on the machine learning prediction model for COPD with lung cancer patients, the area under the receiver operating characteristic curve for LR and Gaussian process were obtained as 0.88 using the soluble fragments of prothrombin time percentage activity, whole lung emphysema index, whole lung mean density, and forced vital capacity combined with neuron-specific enolase and cytokeratin 19 as features. Conclusion The prediction model of COPD with lung cancer patients using a machine learning approach can be used for early detection of lung cancer risk in COPD patients.
With the wide application of deep learning technology in disease diagnosis, especially the outstanding performance of convolutional neural network (CNN) in computer vision and image processing, more and more studies have proposed to use this algorithm to achieve the classification of Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal cognition (CN). This article systematically reviews the application progress of several classic convolutional neural network models in brain image analysis and diagnosis at different stages of Alzheimer’s disease, and discusses the existing problems and gives the possible development directions in order to provide some references.
Colorectal cancer (CRC) is a common malignant tumor that seriously threatens human health. CRC presents a formidable challenge in terms of accurate identification due to its indistinct boundaries. With the widespread adoption of convolutional neural networks (CNNs) in image processing, leveraging CNNs for automatic classification and segmentation holds immense potential for enhancing the efficiency of colorectal cancer recognition and reducing treatment costs. This paper explores the imperative necessity for applying CNNs in clinical diagnosis of CRC. It provides an elaborate overview on research advancements pertaining to CNNs and their improved models in CRC classification and segmentation. Furthermore, this work summarizes the ideas and common methods for optimizing network performance and discusses the challenges faced by CNNs as well as future development trends in their application towards CRC classification and segmentation, thereby promoting their utilization within clinical diagnosis.
ObjectiveTo study the application of artificial intelligence based on neural network in breast cancer screening and diagnosis, and to summarize its current situation and clinical application value.MethodThe combined studies of neural network and artificial intelligence in the directions of breast mammography, breast ultrasound, breast magnetic resonance, and breast pathology diagnosis in CNKI and PubMed database were reviewed.ResultsPublic databases of mammography, such as Digital Database for Screening Mammography (DDSM), provided raw materials for the research of neural network in the field of mammography. Mammography was the most widely used data for screening and diagnosis of breast diseases by neural network. In the field of mammography and color doppler ultrasound, neural network could segment, measure, and analyze the characteristics, judge the benign or malignant, and issue a structured report. The application of neural network in the field of breast ultrasound focused on the diagnosis and treatment of benign and malignant breast diseases. Samsung Madison Group taken the lead in grafting research results into ultrasound instruments. Breast MRI had a lot of high-throughput information, which had became the breakthrough point for the joint study of artificial neural network and imaging omics. Pathological images had more data information to be measured, and quantitative analysis of data was the advantage of neural network. The combination of the two kinds of methods could significantly improve the diagnosis time of pathologists.ConclusionsTo study the application of artificial intelligence in breast cancer screening and diagnosis is to analyze the application of neural network in breast imaging and pathology. At present, artificial intelligence screening can be used as a physician assistant and an objective diagnostic reference assistant, to improve the diagnosis of breast disease. With the development of medical image histology and neural network, the application of artificial intelligence in medical field can be extended to surgical method design, efficacy evaluation, prognosis analysis, and so on.
Electrocardiogram (ECG) is a noninvasive, inexpensive, and convenient test for diagnosing cardiovascular diseases and assessing the risk of cardiovascular events. Although there are clear standardized operations and procedures for ECG examination, the interpretation of ECG by even trained physicians can be biased due to differences in diagnostic experience. In recent years, artificial intelligence has become a powerful tool to automatically analyze medical data by building deep neural network models, and has been widely used in the field of medical image diagnosis such as CT, MRI, ultrasound and ECG. This article mainly introduces the application progress of deep neural network models in ECG diagnosis and prediction of cardiovascular diseases, and discusses its limitations and application prospects.
Because of the diversity and complexity of clinical indicators, it is difficult to establish a comprehensive and reliable prediction model for induction of labor (IOL) outcomes with existing methods. This study aims to analyze the clinical indicators related to IOL and to develop and evaluate a prediction model based on a small-sample of data. The study population consisted of a total of 90 pregnant women who underwent IOL between February 2023 and January 2024 at the Shanghai First Maternity and Infant Healthcare Hospital, and a total of 52 clinical indicators were recorded. Maximal information coefficient (MIC) was used to select features for clinical indicators to reduce the risk of overfitting caused by high-dimensional features. Then, based on the features selected by MIC, the support vector machine (SVM) model based on small samples was compared and analyzed with the fully connected neural network (FCNN) model based on large samples in deep learning, and the receiver operating characteristic (ROC) curve was given. By calculating the MIC score, the final feature dimension was reduced from 55 to 15, and the area under curve (AUC) of the SVM model was improved from 0.872 before feature selection to 0.923. Model comparison results showed that SVM had better prediction performance than FCNN. This study demonstrates that SVM successfully predicted IOL outcomes, and the MIC feature selection effectively improves the model’s generalization ability, making the prediction results more stable. This study provides a reliable method for predicting the outcome of induced labor with potential clinical applications.
Deep learning method can be used to automatically analyze electrocardiogram (ECG) data and rapidly implement arrhythmia classification, which provides significant clinical value for the early screening of arrhythmias. How to select arrhythmia features effectively under limited abnormal sample supervision is an urgent issue to address. This paper proposed an arrhythmia classification algorithm based on an adaptive multi-feature fusion network. The algorithm extracted RR interval features from ECG signals, employed one-dimensional convolutional neural network (1D-CNN) to extract time-domain deep features, employed Mel frequency cepstral coefficients (MFCC) and two-dimensional convolutional neural network (2D-CNN) to extract frequency-domain deep features. The features were fused using adaptive weighting strategy for arrhythmia classification. The paper used the arrhythmia database jointly developed by the Massachusetts Institute of Technology and Beth Israel Hospital (MIT-BIH) and evaluated the algorithm under the inter-patient paradigm. Experimental results demonstrated that the proposed algorithm achieved an average precision of 75.2%, an average recall of 70.1% and an average F1-score of 71.3%, demonstrating high classification accuracy and being able to provide algorithmic support for arrhythmia classification in wearable devices.
The measurement of network is one of the important researches in resolving neuronal population information processing mechanism using complex network theory. For the quantitative measurement problem of functional neural network, the relation between the measure indexes, i.e. the clustering coefficient, the global efficiency, the characteristic path length and the transitivity, and the network topology was analyzed. Then, the spike-based functional neural network was established and the simulation results showed that the measured network could represent the original neural connections among neurons. On the basis of the former work, the coding of functional neural network in nidopallium caudolaterale (NCL) about pigeon's motion behaviors was studied. We found that the NCL functional neural network effectively encoded the motion behaviors of the pigeon, and there were significant differences in four indexes among the left-turning, the forward and the right-turning. Overall, the establishment method of spike-based functional neural network is available and it is an effective tool to parse the brain information processing mechanism.