1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "neurotrophic factor" 28 results
        • RESCUE OF MOTONEURON FROM BRACHIAL PLEXUS NERVE ROOT AVULSION INDUCED CELL DEATH BY SCHWANN CELL DERIVED NEUROTROPHIC FACTOR

          OBJECTIVE To study the protective effects of Schwann cell derived neurotrophic factor (SDNF) on motoneurons of spinal anterior horn from spinal root avulsion induced cell death. METHODS Twenty SD rats were made the animal model of C6.7 spinal root avulsion induced motoneuron degeneration, and SDNF was applied at the lesion site of spinal cord once a week. After three weeks, the C6.7 spinal region was dissected out for motoneuron count, morphological analysis and nitric oxide synthase (NOS) enzyme histochemistry. RESULTS 68.6% motoneurons of spinal anterior horn death were occurred after 3 weeks following surgery, the size of survivors was significantly atrophy and NOS positive neurons increased. However, in animals which received SDNF treatment, the death of motoneurons was significantly decreased, the atrophy of surviving motoneurons was prevented, and expression of NOS was inhibited. CONCLUSION SDNF can prevent the death of motoneurons following spinal root avulsion. Nitric oxide may play a role in these injury induced motoneuron death.

          Release date:2016-09-01 11:05 Export PDF Favorites Scan
        • CONSTRUCTION OF RETROVIRAL VECTOR WITH HUMAN BRAIN-DERIVED NEUROTROPHIC FACTOR GENE EXPRESSION AND IN THE FIBROBLASTS EXPRESSION

          Objective To construct human brain-derived neurotrophic factor retroviral vector-pLXSN (hBDNFpLXSN), and to evaluate the bioactivity of hBDNF. Methods The genome mRNA was extracted from embryonic brain tissue of a 5-month-old infant, the hBDNF gene sequence was obtained with RT-PCR technology, and hBDNF-pLXSN constructed in vitro was used to infect the fibroblasts (NIH/3T3). The expression of hBDNF was identfied by the immunohistochemistry method, and the NIH/3T3 and BDNF biological activities were determined by culture of the PC12 cells and dorsal root gangl ia. Results The hBDNF-pLXSN was constructed successfully by sequencing analyses. The infected NIH/3T3 showed positive expression of hBDNF. The infected NIH/3T3 could product hBDNF. Bioactivity of the products could support the PC12cell survival and neurite growth in the primary cultures of dorsal root gangl ia neurons of mice. Conclusion hBDNF-pLXSNvirus has the abil ity to infect NIH/3T3 and make it expressed and secreted hBDNF with the biological activity. It can be used to treat facial paralysis as a gene therapy.

          Release date:2016-09-01 09:06 Export PDF Favorites Scan
        • Research progress of Schwann cells regulating bone regeneration

          Objective To review the research progress on the role of Schwann cells in regulating bone regeneration. MethodsThe domestic and foreign literature about the behavior of Schwann cells related to bone regeneration, multiple tissue repair ability, nutritional effects of their neurotrophic factor network, and their application in bone tissue engineering was extensively reviewed. ResultsAs a critical part of the peripheral nervous system, Schwann cells regulate the expression level of various neurotrophic factors and growth factors through the paracrine effect, and participates in the tissue regeneration and differentiation process of non-neural tissues such as blood vessels and bone, reflecting the nutritional effect of neural-vascular-bone integration. ConclusionTaking full advantage of the multipotent differentiation ability of Schwann cells in nerve, blood vessel, and bone tissue regeneration may provide novel insights for clinical application of tissue engineered bone.

          Release date:2022-02-25 03:10 Export PDF Favorites Scan
        • mRNA expression of ciliary neurotrophic factor during inury and repair of optic nerves in rats

          Objective To investigate the mRNA expression of ciliary neurotrophic factor on the retina during injury and repair of optic nerves in rats. Methods Thirty-five healthy SD rats were randomly divided into 3 groups: 5 in the control group, 15 in the simply transected optic nerve group and 15 in the optic nerve-sciatic nerve anastomosis group. The simply transected and optic nerve-sciatic nerve anastomosed models were set up, and the retinal tissues of all of the rats were taken out after 3, 7 and 14 days, respectively; and the mRNA expression of CNTF in the 3 groups were observed by semiquantitative reversal transcription-polymerase chain reaction method. Results A minimum expression of CNTF mRNA was found in the retinae of the control group, and the increased rates of expression were found in the retinae of the simple transection of optic nerve group with the increase rate of 100%, 594%, and 485% on the 3rd, 7th, and 14th day respectively after the operation, while in optic nerve-sciatic nerve anastomosis group, the increase rates were found to be 258%, 752% and 515% on the 3rd, 7th, and 14th day respectively after the operation. Conclusion Retinal neurons can respond to axonal reaction of retinal ganglion cells by up-regulate endogenous CNTF after the injury of the optic nerves, which may provide a theoretic base for the application of the exogenous CNTF. (Chin J Ocul Fundus Dis,2004,20:355-357)

          Release date:2016-09-02 05:58 Export PDF Favorites Scan
        • 睫狀神經營養因子對培養大鼠視網膜神經節細胞的影響

          Objective To observe the effect of ciliary neurotrophic factor (CNTF) with different concentrations on the growth and survival of ratsrsquo; retinal ganglion cells (RGC) in vitro. Methods The retinae of 15 Wistar rats which were 2 or 3 days after birth were dissociated into cell suspension with 0.05% trypsin digestion. After 3 days, cultured RGC were identified with immunohistochemistry method using anti-rat Thy-1.1 monoclonal antibody. Cultured RGC were divided into the 10, 20, 40 ng/ml CNTF group (Ⅰ,Ⅱ, and Ⅲgroup) and the control group respectively. The duration of living RGC was recorded. After 3, 5 and 7 days, the A value of living cells was tested by methylthio-tetrazole colorimetric microassay. Results The result of immunohistochemical examination showed that 90% of living cells cultured for 3 days were RGC. No protuberance or volume increase of RGC were observed in CNTF groups and the control group. The duration of the living RGC was prolonged 3 to 4 days in CNTF groups compared with the control group. The A values of living RGC at the 5th and 7th days in the CNTF groups and the control group were: 0.0758plusmn;0.0139 and 0.0693plusmn;0.0113 in I group, 0.0902plusmn;0.0114 and 0.0825plusmn;0.0125 in Ⅱ group, 0.0792plusmn;0.0133 and 0.0653plusmn;0.0086 in Ⅲ group, and 0.0620plusmn;0.0071 and 0.0513plusmn;0.0068 in the control group, respectively. The differences between the simultaneous CNTF and control group were significant (between Ⅱ group and the control group: P<0.01; between Ⅰ and Ⅲ group, and the control group: P<0.05). Conclusion CNTF with some certain concentrations could facilitate survival of RGC in vitro. CNTF has no effect on the conformation of RGC. (Chin J Ocul Fundus Dis, 2002, 18: 283-285)

          Release date:2016-09-02 06:01 Export PDF Favorites Scan
        • Systemic and ocular transplantation of human umbilical cord mesenchymal stem cells into rats with diabetic retinopathy

          ObjectiveTo observe the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) on blood glucose levels and diabetic retinopathy in diabetes mellitus (DM) rats. MethodA total of 45 healthy male Sprague-Dawley rats were randomly divided into normal control group (group A, 10 rats) and DM group (33 rats). Diabetic model was established in DM group by tail vein injection of streptozotocin.The DM group was further randomly divided into 3 groups (11 rats in each group), including group B (no transplantation), group C (hUCMSC was injected through tail vein) and group D (hUCMSC was injected into the vitreous). Blood glucose, retina wholemont staining and expression of brain derived neurotrophic factor (BDNF) in the retina were measured at 2, 4, 6, 8 weeks after hUCMSC injection. The blood glucose was significantly different between A-D groups before injection (t=-64.400, -60.601, -44.065, -43.872; P=0.000) BDNF expression was studied by real time fluorescence quantitative polymerase chain reaction (RT-PCR) and immunohistochemistry staining. ResultsThe blood glucose was significantly different between A-D groups after hUCMSC injection (F=400.017, 404.410, 422.043, 344.109; P=0.000), and between group C and group B/D (t=4.447, 4.990; P < 0.01). Immuno-staining shown that BDNF was positive in ganglion cell layer (RGC) of group A, weak in group B while BDNF expression increased in group C/D. BDNF mRNA expression was significantly different between group B, C and D at 4, 6 and 8 weeks after hUCMSC injection (F=29.372, 188.492, 421.537; P=0.000), and between group B and C/D (t=66.781, 72.401, 63.880, 88.423, 75.120, 83.002; P < 0.01) by RT-PCR analysis. The BDNF mRNA expression was significantly different between C and D groups only at 8 weeks after hUCMSC injection (t=127.321, P=0.005). ConclusionsTail vein injection of hUCMSCs can significantly reduce the blood glucose levels of rats. Intravenous and intravitreal injection of hUCMSCs can increase the expression of BDNF.

          Release date: Export PDF Favorites Scan
        • Therapeutic effect of stem cell-based glial cell derived neurotrophic factor and ciliary neurotrophic factor on retinal degeneration of CLN7 neuronal ceroid-lipofuscinosis mouse model

          ObjectiveTo observe the morphological and functional changes of retinal degeneration in mice with CLN7 neuronal ceroid-lipofuscinosis, and the therapeutic effects of glial cell derived neurotrophic factor (GDNF) and/or ciliary neurotrophic factor (CNTF) based on neural stem cells (NSC) on mouse photoreceptor cells. MethodsA total of 100 CLN7 mice aged 14 days were randomly divided into the experimental group and the control group, with 80 and 20 mice respectively. Twenty C57BL/6J mice aged 14 days were assigned as wild-type group (WT group). Mice in control group and WT group did not receive any interventions. At 2, 4, and 6 months of age, immunohistochemical staining was conducted to examine alterations in the distribution and quantity of cones, rod-bipolar cells, and cone-bipolar cells within the retinal of mice while electroretinography (ERG) examination was utilized to record scotopic a and b-waves and photopic b-wave amplitudes. At 14 days of age, the mice in the experimental group were intravitreally injected with 2 μl of CNTF-NSC, GDNF-NSC, and a 1:1 cell mixture of CNTF-NSC and GDNF-NSC (GDNF/CNTF-NSC). Those mice were then subdivided into the CNTF-NSC group, the GDNF-NSC group, and the GDNF/CNTF-NSC group accordingly. The contralateral eyes of the mice were injected with 2 μl of control NSC without neurotrophic factor (NTF) as their own control group. At 2 and 4 months of age, the rows of photoreceptor cells in mice was observed by immunohistochemical staining while ERG was performed to record amplitudes. At 4 months of age, the differentiation of grafted NSC and the expression of NTF were observed. Statistical comparisons between the groups were performed using a two-way ANOVA. ResultsCompared with WT group, the density of cones in the peripheral region of the control group at 2, 4 and 6 months of age (F=285.10), rod-bipolar cell density in central and peripheral retina (F=823.20, 346.20), cone-bipolar cell density (F=356.30, 210.60) and the scotopic amplitude of a and b waves (F=1 911.00, 387.10) in central and peripheral retina were significantly decreased, with statistical significance (P<0.05). At the age of 4 and 6 months, the density of retinal cone cells (F=127.30) and b-wave photopic amplitude (F=51.13) in the control group were significantly decreased, and the difference was statistically significant (P<0.05). Immunofluorescence microscopy showed that the NSC transplanted in the experimental group preferentially differentiated into astrocytes, and stably expressed CNTF and GDNF at high levels. Comparison of retinal photoreceptor nucleus lines in different treatment subgroups of the experimental group at different ages: CNTF-NSC group, at 2 months of age: the whole, central and peripheral regions were significantly different (F=31.73, 75.06, 75.06; P<0.05); 4 months of age: The difference between the whole area and the peripheral region was statistically significant (F=12.27, 12.27; P<0.05). GDNF/CNTF-NSC group, 2 and 4 months of age: the whole (F=27.26, 27.26) and the peripheral area (F=16.01, 13.55) were significantly different (P<0.05). In GDNF-NSC group, there was no statistical significance at all in the whole, central and peripheral areas at different months of age (F=0.00, 0.01, 0.02; P>0.05). ConclusionsCLN7 neuronal ceroid-lipofuscinosis mice exhibit progressively increasing degenerative alterations in photoreceptor cells and bipolar cells with age growing, aligning with both morphological and functional observations. Intravitreal administration of stem cell-based CNTF as well as GDNF/CNTF show therapeutic potential in rescuing photoreceptor cells. Nevertheless, the combined application of GDNF/CNTF-NSC do not demonstrate the anticipated synergistic protective effect. GDNF has no therapeutic effect on the retinal morphology and function in CLN7 neuronal ceroid-lipofuscinosis mice.

          Release date:2024-07-16 02:36 Export PDF Favorites Scan
        • CONSTRUCTION OF EUKARYOTIC EXPRESSION VECTOR FOR HUMAN GLIAL DERIVED NEUROTROPHIC FACTOR AND ITS EXPRESSION IN SPINAL CORD TISSUE OF SD RAT

          Objective To investigate the possibility of constructing eukaryotic expression vector for human glial derived neurotrophic factor (hGDNF), transfecting it to spinal cord tissue of rats so as to treat acute spinal cord injury. Methods The eukaryotic expression vector pcDNA3-hGDNF was constructed by recombinant DNA technique, transfected into glial cell and neuron of spinal cord by liposome DOTAP as experimental group. In control group, mixture of empty vector and liposome was injected. The mRNA and protein expressions of hGNDF were detected by RT-PCR and Western blot. Results After the recombinant eukaryotic expression vector for hGDNF was digested with Hind III and XbaⅠ, electrophoresis revealed 400 bp fragment for hGDNF gene and 5 400 bp fragment for pcDNA3 vector. In the transfected spinal cord tissue, the mRNA and protein expressions of hGDNF gene were detected with RT-PCR and Western blot. Conclusion The constructed eukaryotic expression vector pcDNA3hGDNF could be expressed in the transfected spinal cord tissue of rat, so it provide basis for gene therapy of acute spinal cord injury.

          Release date:2016-09-01 09:22 Export PDF Favorites Scan
        • Brain-derived neurotrophic factor and retinal ganglion cells in the retina of diabetic rat after intravitreal injection of human umbilical cord mesenchymal stem cells-induced neural stem cells

          ObjectiveTo investigate the effect of intravitreal injection of neural stem cells (NSC) derived from human umbilical cord mesenchymal stem cells (hUCMSC) on the expression of brain-derived neurotrophic factor (BDNF) and the number of retinal ganglion cells (RGC). MethodsFifty-two adult male Sprague-Dawley rats were randomly divided into normal group (group A) and diabetes mellitus group which received intraperitoneal injection of streptozocin to make diabetic rat models. One month after the diabetic rat models were confirmed successfully, diabetic rats were randomly divided into diabetic group (group B), hUCMSC group (group C) and hUCMSC-induced NSC group (group D). And thirteen diabetic rats were included in each group. Immuno-cytochemistry was applied to observe BDNF and thymosin-1(Thy-1) staining in the retina. Then mean integrated absorbance of the staining region on the retina slices were analyzed by Image-Pro Plus 6.0. The number of Thy-1 labeled RGC was record. ResultsBDNF and Thy-1 were positive on the retina slices from group A. The staining intensity from group B became weak and the expression of BDNF and Thy-1 gradually decrease with time (P < 0.05), and those from group C and group D were positively (P < 0.05), especially in group D (P < 0.05). The BDNF expression and Thy-1 labeled RGC were the same between group B and C (P > 0.05) at 2 weeks after injection, but were significant different for other time points (P < 0.05).Significant positive correlation between the expression of BDNF and the number of RGC were found by the Pearson correlation analysis (r=0.964, P < 0.05). ConclusionIntravitreal injection of hUCMSC-derived NSC to diabetic rat may protect the retina by promoting the expression of BDNF and increasing the number of RGC.

          Release date:2016-11-25 01:11 Export PDF Favorites Scan
        • TRANSPLANTATION OF NEURAL STEM CELLS INDUCED BY ALL-TRANS-RETINOIC ACID COMBINED WITH GLIAL CELL LINE DERIVED NEUROTROPHIC FACTOR AND CHONDROITINASE ABC FOR REPAIRING SPINAL CORD INJURY OF RATS

          ObjectiveTo observe the effect of transplantation of neural stem cells (NSCs) induced by all-trans-retinoic acid (ATRA) combined with glial cell line derived neurotrophic factor (GDNF) and chondroitinase ABC (ChABC) on the neurological functional recovery of injured spinal cord in Sprague Dawley (SD) rats. MethodsSixty adult SD female rats, weighing 200-250 g, were randomly divided into 5 groups (n=12): sham operation group (group A), SCI model group (group B), NSCs+GDNF treatment group (group C), NSCs+ChABC treatment group (group D), and NSCs+GDNF+ChABC treatment group (group E). T10 segmental transversal injury model of the spinal cord was established except group A. NSCs induced by ATRA and marked with BrdU were injected into the site of injury at 8 days after operation in groups C-E. Groups C-E were treated with GDNF, ChABC, and GDNF+ChABC respectively at 8-14 days after operation;and group A and B were treated with the same amount of saline solution. Basso Beattie Bresnahan (BBB) score and somatosensory evoked potentials (SEP) test were used to study the functional improvement at 1 day before remodeling, 7 days after remodeling, and at 1, 2, 5, and 8 weeks after transplantation. Immunofluorescence staining and HE staining were performed to observe the cells survival and differentiation in the spinal cord. ResultsFive mouse died but another rats were added. At each time point after modeling, BBB score of groups B, C, D, and E was significantly lower than that of group A, and SEP latent period was significantly longer than that of group A (P<0.05), but no difference was found among groups B, C, D, and E at 7 days after remodeling and 1 week after transplantation (P>0.05). BBB score of groups C, D, and E was significantly higher than that of group B, and SEP latent period was significantly shorter than that of group B at 2, 5, and 8 weeks after transplantation (P<0.05);group E had higher BBB score and shorter SEP latent period than groups C and D at 5 and 8 weeks, showing significant difference (P<0.05). HE staining showed that there was a clear boundary between gray and white matter of spinal cord and regular arrangement of cells in group A;there were incomplete vascular morphology, irregular arrangement of cells, scar, and cysts in group B;there were obvious cell hyperplasia and smaller cysts in groups C, D, and E. BrdU positive cells were not observed in groups A and B, but could be found in groups C, D and E. Group E had more positive cells than groups C and D, and difference was significant (P<0.05). The number of glial fibrillary acidic protein positive cells of groups C, D, and E was significantly less than that of groups A and B, and it was significantly less in group E than groups C and D (P<0.05). The number of microtubule-associated protein 2 positive cells of groups C, D, and E was significantly more than that of groups A and B, and it was significantly more in group E than groups C and D (P<0.05). ConclusionThe NSCs transplantation combined with GDNF and ChABC could significantly promote the functional recovery of spinal cord injury, suggesting that GDNF and ChABC have a synergistic effect in the treatment of spinal cord injury.

          Release date: Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品