ObjectiveTo understand advances in diagnostic value of long non-coding RNA (LncRNA) in hepatocellular carcinoma (HCC) and to find a useful tumor marker for early diagnosis of HCC.MethodThe recent literatures relevant the LncRNA in the HCC were reviewed and summarized.ResultsThe LncRNA could be detected in the blood and urine of the patients by the RNA immunoprecipitation, sequencing technology, gene chip, real-time quantitative PCR, and other techniques. With the rise of RNA sequencing technology, the number of identified LncRNAs had increased rapidly, and the remarkable progress had been made in the field of liver diseases. At present, the LncRNA related to HCC mainly included the urothelial cancer associated 1, highly up-regulated in liver cancer, metastasis-associated lung adenocarcinoma transcript 1, HOXA transcript at the distal tip, H19, SPRY4 intronic transcript 1, plasma-cytoma variant translocation gene 1, uc002mbe.2, uc007biz.1, etc., which were stable in the blood or urine and abnormally expressed in the HCC, alone or as a supplement to alpha-fetoprotein could obviously improve the sensitivity and specificity of diagnosis of HCC, even increased the sensitivity to 100%.ConclusionsLncRNA is specifically expressed in HCC and is expected to be a novel biomarker for early diagnosis of HCC. However, LncRNA has many types, diverse structures, and complex molecular regulation mechanisms. It is very difficult to find a strong combination or combinations to replace or supplement traditional biomarkers and to be clinically useful further efforts. It is believed that with deepening of LncRNA research in HCC, it will have a broader prospect in early screening, diagnosis, and prognosis of HCC.
ObjectiveTo summarize the mechanism of long non-coding RNA (lncRNA) in signal pathways related to osteogenic differentiation. Methods Relevant domestic and foreign researches in recent years were consulted. The characteristics and biological functions of lncRNA were introduced, and the specific mechanism of lncRNA regulating related signal pathways in osteogenic differentiation was elaborated. Results The exertion and maintenance of normal function of bone requires the closed coordination of transcription networks and signal pathways. However, most of these signal pathways or networks are dysregulated under pathological conditions that affect bone homeostasis. lncRNA can regulate the differentiation of various bone cells by activating or inhibiting signal pathways to achieve the balance of bone homeostasis, thereby reversing the pathological state of bones and achieving the purpose of treating bone metabolic diseases. Conclusion At present, the research on the mechanism of lncRNA regulating various osteogenic differentiation pathways is still in the early stage. Its in-depth regulator mechanism, especially the cross-talk of complex signal pathways needs to be further studied. And how to apply these molecular targets to clinical treatment is also a big challenge.
ObjectiveTo investigate the role of non-coding RNA (ncRNA) in the proliferation, migration and metastasis of hepatocellular carcinoma (HCC) and the mechanism of HCC resistance to sorafenib.MethodThe literatures of ncRNA studies related to the incidence of HCC in recent years were reviewed, and the relationship between different ncRNAs and the proliferation, migration and metastasis of HCC was summarized, and the mechanism of sorafenib resistance in the HCC was analyzed from the perspective of ncRNA.ResultsThere were many kinds of ncRNAs, which were classified into the long ncRNA and short ncRNA according to their length. Currently, microRNA, which was widely studied, belonged to the short ncRNA. The regulation of the expressions of different microRNAs and long ncRNA could enhance or inhibit the signaling pathway of the producing HCC and played an important guiding role in the diagnosis and treatment of HCC. Meanwhile, the targeted regulation of this ncRNA could reverse the sorafenib resistance in the HCC.ConclusionsncRNA plays an important role in the pathogenesis of HCC and has become a potential target for the treatment of HCC. Targeted regulation of specific ncRNA expression could reverse sorafenib resistance in HCC.
ObjectiveCombined with long non-coding RNA (lncRNA) to find a regression model that can be used to predict the survival rate of patients with colon cancer before operation.MethodsThe clinical information and gene expression information of patients with colon cancer were downloaded by using TCGA database. The differentially expressed lncRNAs in tumor and paracancerous tissues were screened out, and then combined with the clinical information of patients to construct Cox proportional hazard regression model.ResultsA total of 26 kinds of lncRNAs with statistical difference in gene expression between paracancerous tissues and tumor tissues were selected (P<0.05). Through repeated screening and comparison of prediction efficiency, the prediction model was finally selected, which was constructed by patients’ age, M stage, N stage, and three kinds of lncRNAs (ZFAS1, SNHG25, and SNHG7) gene expression level: age [HR=4.00, 95%CI: (1.48, 10.84), P=0.006], M stage [HR=3.96, 95%CI: (2.23, 7.04), P<0.001], N stage [HR=1.87, 95%CI: (1.24, 2.84), P=0.003], ZFAS1 gene expression level [HR=0.60, 95%CI: (0.41, 0.86), P=0.006], SNHG25 gene expression level [HR=0.85, 95%CI: (0.73, 1.00), P=0.045], and SNHG7 gene expression level [HR=2.32, 95%CI: (1.53, 3.52), P<0.001] were all independent risk factors for postoperative survival of patients with colon cancer. The area under the ROC curves for predicting 1, 3, and 5-year overall survival were 0.802, 0.828, and 0.771, respectiely, which had a good prediction ability.ConclusionThe predictive model constructed by the combination of ZFAS1, SNHG25, SNHG7 genes expression level with M stage, N stage, and age can better predict the overall survival rate of patients before operation, which can effectively guide clinical decision-making and choose the most suitable treatment method for patients.
Objective To investigate the effect of non-coding RNA activated by DNA damage (NORAD) on acute lung injury (ALI) in septic rats by regulating the miR-155-5p/TLR6 molecular axis. Methods The rats were randomly divided into control group, model group, low NORAD expression no-load group (LV-sh-NC), low NORAD expression group (LV-sh-NORAD), low NORAD expression +miR-155-5p low expression no-load group (LV-sh-NORAD+NC antagomir), NORAD low expression +miR-155-5p low expression group (LV-sh-NORAD+miR-155-5p antagomir). ELISA kits were applied to detect interleukin (IL)-8, IL-1β, and tumor necrosis factor-α (TNF-α) levels; quantitative real-time polymerase chain reaction was applied to detect the expression of NORAD, miR-155-5p, and Toll-like receptor 6 (TLR6) genes in lung tissue of rats in each group. The ratio of wet weight to dry weight (W/D) of lung tissue was measured. The pathological changes of lung tissue were observed by hematoxylin-eosin staining, and apoptosis in lung tissue cells was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling. Western blot was applied to detect the expressions of TLR6, Bax, Bcl-2, and cleaved cysteinyl aspartate specific proteinase 3 caspase-3) proteins in cells. Dual luciferase reporter gene experiment was applied to verify the relationship between miR-155-5p and NORAD and TLR6. Results Compared with the control group, the lung tissue of rats in the model group and LV-sh-NC group was obviously damaged, the levels of serum IL-1β, TNF-α, IL-8, expression of NORAD and TLR6 mRNA in lung tissue, W/D ratio, apoptosis rate, expression of TLR6, Bax, and Cleaved-caspase-3 proteins were obviously increased, the expression of miR-155-5p and Bcl-2 proteins in lung tissue was obviously reduced (P<0.05). Down-regulation of NORAD expression could reduce lung tissue injury, serum IL-1β, TNF-α, IL-8 levels, mRNA expression of NORAD and TLR6 in lung tissue, W/D ratio, apoptosis rate, TLR6, Bax, Cleaved caspase-3 protein expression, and cleaved caspase-3 protein expression. The expression of miR-155-5p and Bcl-2 protein in lung tissue were significantly increased (P<0.05). Down-regulating the expression of miR-155-5p could reduce the improvement effect of negatively regulated NORAD on sepsis ALI rats (P<0.05). Conclusion Interference with NORAD can alleviate lung injury in ALI rats by regulating the miR-155-5p/TLR6 molecular axis.
ObjectiveTo investigate the key long non-coding RNAs (lncRNAs) and transcription factors (TFs) in idiopathic pulmonary fibrosis (IPF) by Bioinformatics analysis.MethodsBioinformatics analysis of three gene expression profiles from the Gene Expression Omnibus dataset (GSE2052, GSE44723, and GSE24206), including 42 IPF and 21 normal lung tissues, was performed in this study. Subsequently, differentially expressed genes (DEGs) were filtered, and key genes involved in signaling pathways and the DEG-associated protein-protein interaction network (PPI) were further analyzed. The filtered genes expression was determined by real-time quantitative polymerase chain reaction analysis.ResultsA total of 8483 aberrantly expressed genes were screened, and 29 overlapping genes were identified among these three datasets. A significant enrichment analysis of DEG-associated functions and pathways was further performed. A total of 18 modules were obtained from the DEG PPI network, and most of the modules were involved in polyubiquitination, Golgi vesicle transport, endocytosis and so on. The key genes were obtained through hypergeometric testing, and most of the corresponding genes were closely associated with ubiquitin-mediated proteolysis, the spliceosome, and the cell cycle. These differential expressed genes, such as lncMALAT1, E2F1 and YBX1, were detected in the peripheral blood of IPF patients when compared with those normal control subjects.ConclusionlncMALAT1, E2F1 and YBX1 might be possible regulators for the pathogenesis of idiopathic pulmonary fibrosis.
Non-coding RNA (ncRNA) is a newly discovered functional RNA different from messenger RNA, which can participate in the regulation of tumor occurrence and development. Studies have shown that ncRNA can participate in the regulation of radiotherapy response to gastric cancer, and its mechanism may be related to its influence on DNA damage repair, gastric cancer cell stemness, apoptosis, and activation of epidermal growth factor receptor signal pathway. This article summarizes the mechanism of ncRNA regulating the response of gastric cancer to radiotherapy, and looks forward to the potential clinical application of ncRNA in the resistance of gastric cancer to radiotherapy.
ObjectiveTo investigate the effect of LOC103693069 on hypoxic apoptosis of bone marrow mesenchymal stem cells (BMSCs). Methods BMSCs from 1-week-old Sprague Dawley rat bone marrow were isolated, cultured, and passaged by the whole bone marrow adherent culture method. After identification of adipogenic, chondrogenic, and osteogenic differentiation, the 3rd generation cells were treated with hypoxia under 5%O2, 1%O2, and anaerobic conditions. After 48 hours, the cell viability, apoptosis, and apoptosis-related proteins [hypoxia inducible factor 1α (HIF-1α), Caspase-3, B cell lymphoma/leukemia 2 (Bcl-2)] expressions were detected, and normal BMSCs were used as controls. Based on the research results, the concentration group with the most obvious apoptosis was selected and used for subsequent experiments. After 48 hours of hypoxia treatment, BMSCs were taken and analyzed by gene chip and real-time fluorescence quantitative PCR (qRT-PCR) to screen the most significantly down-regulated gene and construct their high-expression, low-expression, and negative control lentiviruses; BMSCs were transfected with the different lentiviruses, respectively. After qRT-PCR detection confirmed that the transfection was successful, the BMSCs were treated with hypoxia for 48 hours to observe the cell viability and the expressions of apoptosis-related proteins. ResultsAfter cell viability, apoptosis, and apoptosis-related proteins were detected, cell apoptosis was the most significant under anaerobic conditions after 48 hours. The above indicators were significantly different from other groups (P<0.05), and this group was used for treatment conditions for subsequent experiments. Gene chip analysis showed that after 48 hours of hypoxia treatment, AC125847.1, LOC102547753, AABR07017208.2, and LOC103693069 were significantly down-regulated in BMSCs, and the expressions of LOC103693069 was the most significant down-regulation detected by qRT-PCR (P<0.05). It was selected to construct lentivirus and transfect BMSCs. Afterwards, qRT-PCR detection showed the successful transfection into the cells. After hypoxia treatment, the apoptosis rate and the expressions of apoptosis-related proteins of BMSCs overexpressed by the gene were significantly reduced (P<0.05). Conclusion LOC103693069 can relieve the hypoxic apoptosis of BMSCs.
ObjectiveTo summarize the molecular mechanisms and clinical treatment of gastric cancer with liver metastasis (GCLM), in order to provide new ideas for future treatment. MethodThe literatures about mechanism and treatment strategy of GCLM in recent years were searched and reviewed. ResultsMost patients with gastric cancer were in advanced stage or had developed distant metastases when they were first diagnosed, among which liver was the common site of metastasis. The complex molecular mechanisms of GCLM had not been fully clarified. Molecular mechanisms at different levels, including non-coding RNA, circulating tumor cells, exosomes, tumor microenvironment and signaling pathways, were relatively independent and interacted with each other, providing potential biomarkers and therapeutic targets for GCLM. At present, the best treatment method for patients with GCLM was mainly divided into local and systemic treatment. The local treatment included surgical treatment, radiofrequency ablation and proton beam therapy, while the systemic treatment included systemic chemotherapy, targeted therapy and immunotherapy, among which the targeted therapy and immunotherapy were the focus of recent research. ConclusionsThe mechanism of GCLM is the result of the interaction between tumor cells and the microenvironment at the site of metastasis. Understanding them is of great significance to guide clinical treatment and prognosis. At present, there is no unified treatment standard for GCLM. To achieve the ideal treatment effect, we should not only rely on single therapy, but also adopt multi-disciplinary and individual therapy according to the specific disease status of patients and the nature of tumors.
ObjectiveTo summarize the latest research of long non-coding RNA (lncRNA) as competitive endogenous RNA (ceRNA) and its targeting technology in pancreatic cancer, so as to provide new ideas for lncRNA targeted intervention or as an early diagnostic marker of pancreatic cancer. MethodThe domestic and foreign literature on researches of lncRNA as ceRNA and its targeting technology in the pancreatic cancer was searched and reviewed. ResultsAt present, the growing number of evidences showed that in pathological states such as tumors, the abundance of intracellular lncRNAs was sufficient to trigger ceRNA crosstalk. The lncRNA played a role like “sponge” through the complementary binding of incomplete base of miRNA with miRNA response elements, then adsorbed miRNA, and thus changed the activity and effectiveness of miRNA. It also regulated the expression of downstream target genes. Moreover, a large number of studies had identified that the lncRNA-mediated ceRNA regulatory network, namely lncRNA/miRNA/mRNA axis, played a role in promoting or inhibiting the occurrence and progression of pancreatic cancer through a variety of cellular functions. In addition, many technologies targeting lncRNA, such as small interfering RNA, antisense oligonucleotides, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9, and small molecule inhibitors, etc. had been widely studied and acquired important results in preclinical research. ConclusionsThe ceRNA hypothesis is a functional complex composed by non-coding RNAs and mRNAs with non-coding properties, forming a ceRNA network of multi-level and cross-regulatory on the transcriptome. Epigenetic modification and key post-transcriptional regulation of lncRNA have been achieved through ceRNA network mechanism, which has become a successful paradigm for exploring the function of lncRNA. The tumor suppressive and promoting effects and mechanisms of many lncRNAs in the occurrence and development of pancreatic cancer are explored in many studies. Moreover, the continuous progress of targeted lncRNA technology provides conditions for study of lncRNA. LncRNA has a potential to be used as a biomarker for precancerous diagnosis and prognosis of pancreatic cancer.