Objective To investigate the effect of stretch on long non-coding RNA taurine upregulated gene 1 (TUG1)-mediated miR-545-3p/cannbinoida receptor 2 (CNR2) pathway regulating bone regeneration in the distraction area of rats during distraction osteogenesis. MethodsThirty-six 10-week-old male Sprague Dawley rats were randomly divided into 3 groups (n=12 in each group): group A (femoral fracture+injection of interfering RNA), group B (distraction osteogenesis+injection of interfering RNA), and group C (distraction osteogenesis+injection of TUG1). Groups A and B were injected with 60 μg of interfering RNA at the beginning of incubation period (immediate after operation), the beginning of distraction phase (7 days after operation), and the end of distraction phase (21 days after operation), and group C was injected with 60 μg of synthetic TUG1 in vivo interfering sequence at the same time. The general situation of rats in each group was observed during the experiment. The mineralization of fracture space or distraction area was observed by X-ray films at 21, 35, and 49 days after operation. At 49 days after operation, the samples of the distraction area were taken for HE staining to observe the mineralization, and real-time fluorescence quantitative PCR (qRT-PCR) was used to detect the expressions of osteoblast-related genes such as TUG1, miR-545-3p, CNR2, alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). Blood samples were collected from the abdominal aorta of the rats, and the expressions of ALP and C terminal telopeptide of type Ⅰ (CTX-Ⅰ) protein were detected by ELISA assay.Results The results of X-ray film and HE staining observations showed that osteogenesis in group C was superior to groups A and B at the same time point. The results of qRT-PCR showed that the relative mRNA expressions of TUG1, CNR2, ALP, OCN, and OPN in group C were significantly higher than those in group A and group B, and the relative mRNA expression of miR-545-3p in group C was significantly lower than that in group A and group B (P<0.05). The relative mRNA expressions of TUG1 and ALP in group B were significantly higher than those in group A, and the relative mRNA expression of miR-545-3p in group B was significantly lower than that in group A (P<0.05). There was no significant difference in the relative mRNA expressions of CNR2, OCN, and OPN between group A and group B (P>0.05). The results of ELISA showed that the expressions of ALP and CTX-Ⅰ protein were significantly higher in group C than in group A and group B, and in group B than in group A (P<0.05). ConclusionUnder the action of stretch, the expression of TUG1 in the femoral distraction area of rats increases, which promotes the expression of CNR2 by inhibiting the expression of miR-545-3P, which is helpful to the mineralization of the extension area and osteogenesis.
OBJECTIVE To testify the inductive osteogenesis of allogeneic bone matrix gelatin (BMG) in promoting intervertebral fusion. METHODS The gelatin sponge, allogeneic BMG, decalcified bone matrix (DBM) and alcohol conserved bone were implanted respectively into the intervertebral space of rabbit, whose intervertebral discs were removed before implantation. The intervertebral spaces were evaluated by X-ray and histological examination at 4, 8, and 12 weeks after operation. RESULTS No obvious immune rejection was observed. Amounts of new bone were formed in the intervertebral spaces at 4 and 8 weeks. And complete infusion of the intervertebral spaces were appeared at 12 weeks. CONCLUSION Allogeneic BMG can promote bone fusion of intervertebral spaces through osteoinduction, which suggests that allogeneic BMP is an ideal substitute for bone replacement.
Large bone defect repair is a difficult problem to be solved urgently in orthopaedic field, and the application of bone repair materials is a feasible method to solve this problem. Therefore, bone repair materials have been continuously developed, and have evolved from autogenous bone grafts, allograft bone grafts, and inert materials to highly active and multifunctional bone tissue engineering scaffold materials. In this paper, the related mechanism of bone repair materials, the application of bone repair materials, and the exploration of new bone repair materials are introduced to present the research status and advance of the bone repair materials, and the development direction is also prospected.
OBJECTIVE This experimental study was aim to investigate the osteogenesis of ceramic-like xenogeneic bone (CXB) combining with bone marrow (BM). METHODS The CXB combining BM was implanted into the sacrospinalis muscle of rabbits, and CXB implanted alone was used as control. Eighteen Japanese rabbits with long ear were used. The size of CXB was 5 mm x 5 mm x 5 mm, and the implanted materials were taken out at 2, 4, 8, 12, 16 and 24 weeks after implantation. The histological and histochemical characteristics were investigated. RESULTS There existed cartilage and new bone in the groups of CXB combining BM in 2 weeks. Later, be cartilage turned out to the bone and in eight weeks the medullary cavity appeared. However, as the time went on, new bone formation increased and typical osteogenesis could be found. While in the groups of CXB alone, no formation of new bone or cartilage was found. CONCLUSION The implantation of CXB combined with BM could result in new bone formation in the way of osteoconduation, osteoinduction, and providing, osteoblasts or chondroblasts. It could be an ideal bone substitute, and its clinical use in future seemed very hopeful.
Objective To provide the seed cells for bone tissue engineering, to establ ish immortal ized human bone marrow mesenchymal stem cells (MSCxj) and to investigate the ectopic osteogenesis of MSCxj. Methods MSCxjs of the 35thand 128th generations were maintained and harvested when the cell density reached 2 109. Then, these cells were co-cultured with heterogeneous bone scaffold in groups A (the 35th generation, n=12) and group B (the 128th generation, n=12); heterogeneous bone alone was used in group C (n=12). The cell prol iferation was observed by scanning electron microscopy (SEM) after 48 hours and 18 days of osteogenic induction culture. The complex was implanted subcutaneouly through a 3-mm-incision at both sides of the back in 18 nude mice. Tetracycl ine label ing was performed before the animals were sacrificed. Tetracycl ine fluorescence staining, HE staining, ponceau staining, and immunohistochemistry staining for osteocalcin were performed at 4, 8, and 12 weeks after transplantation; the morphologic quantitative analysis was made. Results After 48 hours, SEM showed that MSCxjs adhered to heterogeneous bone and grew well; after 18 days, a large number of new filamentous extracellular matrix and small granules were found to cover the cells. The results of tetracycl ine fluorescence staining, HE staining, and ponceau staining in groups A and B showed that the osteogenesis was not obvious at 4 weeks after transplantation; osteoid matrix deposition was noted around and in theheterogeneous bone at 8 weeks; and osteogenesis was increased at 12 weeks. There was no significant difference in bone formation between groups A and B. Osteogenesis was not observed in group C. The osteocalcin expressions were positive in groups A and B. The bone ingrow percentages of groups A and B were 5.64% ± 2.68% and 4.92% ± 2.95% at 8 weeks, and 13.94% ± 2.21% and 14.34% ± 3.46% at 12 weeks, showing significant differences between 8 weeks and 12 weeks at the same group (P lt; 0.05) and no significant difference between groups A and B at the same time (P gt; 0.05). Conclusion MSCxj has favorable abil ities of ectopic osteogenesis and can be appl ied as seeded cells in bone tissue engineering.
Objective To compare the effects of hypoxia-inducible drugs using deferoxamine (DFO) and accordion technique (AT) on activating the hypoxia-inducible factor 1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway to promote bone regeneration and remodelling during consolidation phase of distraction osteogenesis (DO). Methods Forty-five specific-pathogen-free adult male Sprague-Dawley (SD) rats were randomly divided into the control group, DFO group, and AT group, with 15 rats in each group. All rats underwent osteotomy to establish a right femur DO model. Then, continuous distraction was started for 10 days after 5 days of latency in each group. During the consolidation phase after distraction, no intervention was performed in the control group; DFO was locally perfused into the distraction area in the DFO group starting at the 3rd week of consolidation phase; cyclic stress stimulation was given in the AT group starting at the 3rd week of consolidation phase. The general condition of rats in each group was observed. X-ray films were conducted at the end of the distraction phase and at the 2nd, 4th, and 6th weeks of the consolidation phase to observe the calcification in the distraction area. At the 4th and 6th weeks of the consolidation phase, peripheral blood was taken for ELISA detection (HIF-1α, VEGF, CD31, and Osterix), femoral specimens were harvested for gross observation, histological staining (HE staining), and immunohistochemical staining [HIF-1α, VEGF, osteopontin (OPN), osteocalcin (OCN)]. At the 6th week of the consolidation phase, Micro-CT was used to observe the new bone mineral density (BMD), bone volume/tissue volume (BV/TV), trabecular separation (Tb.Sp), trabecular number (Tb.N), and trabecular thickness (Tb.Th) in the distraction area, and biomechanical test (ultimate load, elastic modulus, energy to failure, and stiffness) to detect bone regeneration in the distraction area. Results The rats in all groups survived until the termination of the experiment. ELISA showed that the contents of HIF-1α, VEGF, CD31, and Osterix in the serum of the AT group were significantly higher than those of the DFO group and control group at the 4th and 6th weeks of the consolidation phase (P<0.05). General observation, X-ray films, Micro-CT, and biomechanical test showed that bone formation in the femoral distraction area was significantly better in the DFO group and AT group than in the control group, and complete recanalization of the medullary cavity was achieved in the AT group, and BMD, BV/TV, Tb.Sp, Tb.N, and Tb.Th, as well as ultimate load, elastic modulus, energy to failure, and stiffness in the distraction area, were better in the AT group than in the DFO group and control group, and the differences were significant (P<0.05). HE staining showed that trabecular bone formation and maturation in the distraction area were better in the AT group than in the DFO group and control group. Immunohistochemical staining showed that at the 4th week of consolidation phase, the expression levels of HIF-1α, VEGF, OCN, and OPN in the distraction area of the AT group were significantly higher than those of the DFO group and control group (P<0.05); however, at 6th week of consolidation phase, the above indicators were lower in the AT group than in the DFO group and control group, but there was no significant difference between groups (P>0.05). Conclusion Both continuous local perfusion of DFO in the distraction area and AT during the consolidation phase can activate the HIF-1α/VEGF signaling pathway. However, AT is more effective than local perfusion of DFO in promoting the process of angiogenesis, osteogenesis, and bone remodelling.
Objective To investigate the mode and influential factor of newbone formation following distraction osteogenesis in mandibular lengthening. Methods Corticotomy was performed on bilateral mandibles in twelve adult male goats. A custommade distractor was used to lengthen the mandible at a rate of 1mm/day for 10 days (total 10 mm elongation). Four goats were sampled respectivelyat 2, 4 and 8 weeks after completion of distraction. The lengthening mandibles were examined by roentgenography and histology. Results Newly formed callus was observed in the distraction gap after mandibular lengthening. The new bone exhibited intramembranous ossification generally, but cartilage islands could be found in the specimen that diastractor loosed. Conclusion The above findings indicate that the mode of new bone formation in mandibular lengthening following distraction osteogenesis appears to be intramembranous ossification and that endochondral ossification takes place in case distractor has loosened.
Objective To investigate the role and regulatory mechanism of ring finger protein 11 (RNF11) on Akt signaling pathway in the process of osteogenesis of bone marrow mesenchymal stem cells (BMSCs) to provide ideas for further clarifying its osteogenesis mechanism and its use in clinical treatment in the future. Methods BMSCs were isolated and cultured from fresh bone marrow of healthy donors and subcultured. The 4th generation cells were used in experiments after identification by flow cytometry, and osteogenic, chondrogenic, and adipogenic induction. BMSCs were cultured in osteogenic differentiation medium for 0-14 days. The degree of osteogenic differentiation was detected by Alizarin red staining and alkaline phosphatase (ALP) staining, and the protein expression of RNF11 was detected by Western blot. The 4th generation BMSCs were divided into blank control group (group A), empty lentivirus (Lv-NC) group (group B), and knockdown RNF11 (Lv-ShRNF11) group (group C). Osteogenesis was induced and cultured for 0-14 days. The expression of RNF11 protein was detected by Western blot, the degree of osteogenic differentiation was detected by Alizarin red staining and ALP staining, and the relative mRNA expressions of Runx2, osteocalcin (OCN), and osteopontin (OPN) were detected by real-time fluorescence quantitative PCR (qRT-PCR). The protein relative expressions of Akt, Smad1/5/8, and β-catenin signaling pathway were detected by Western blot, expressed as the ratio before and after phosphorylation. In order to study the effect mechanism of RNF11 on Akt signaling pathway, the 4th generation BMSCs were divided into Lv-NC transfection group (group A1), Lv-ShRNF11 transfection group (group B1), and Lv-ShRNF11 transfection supplemented with Akt signaling pathway activator SC79 group (group C1). The protein relative expressions of RNF11 and Akt signaling pathway were detected by Western blot, the related osteogenesis indexes were detected by Alizarin red staining, ALP staining, and qRT-PCR. ResultsThe flow cytometry, and osteogenic, chondrogenic, adipogenic induction culture identification showed that the isolated and cultured cells were BMSCs. The protein relative expression of RNF11 increased gradually with the extension of osteogenic differentiation time (P<0.05); after knockdown RNF11, Alizarin red and ALP stainings showed that the degree of osteogenic differentiation of BMSCs in group C were significantly lower than those in groups A and B, and qRT-PCR detection showed that the relative expression of Runx2, OCN, and OPN mRNA significantly decreased (P<0.05). The protein relative expressions of RNF11 and Akt signaling pathway significantly increased with the extensions of osteogenic differentiation time (P<0.05). After knockdown RNF11, the protein relative expression of Akt signaling pathway in group C was significantly lower than that in groups A and B (P<0.05), while Smad1/5/8 and β-catenin signaling pathway had no significant effect (P>0.05). Compared with group A1, the protein relative expression of RNF11 in groups B1 and C1 significantly decreased (P<0.05). Compared with groups A1 and C1, the protein relative expression of Akt signaling pathway in group B1 was significantly lower (P<0.05); Alizarin red and ALP stainings showed that the degree of osteogenic differentiation of BMSCs in group C1 were slightly lower than that of group A1 (P>0.05), but significantly higher than that of group B1 (P<0.05); qRT-PCR detection showed that the relative expressions of Runx2, OCN, and OPN mRNA in group C1 were slightly lower than those of group A1 (P>0.05), but were significantly higher than those of group B1 (P<0.05). ConclusionRNF11 promotes the differentiation of BMSCs into osteoblasts by positively regulating the activation level of Akt signaling pathway. RNF11 can be used as a potential target to improve the bone repair efficacy of BMSCs and treat bone metabolic diseases.
Objective To examine the mRNA expression of activin A(ACT A) and follistatin(FS) during mandibular lengthening and to elucidate the regulating pattern of during mandibular distractionosteogenesis.Methods Skeletally mature-white New Zealand rabbits were established right mandibular distraction osteogenesis models and the mandibles were lengthened 7 days after osteomy. Atthe end of latency period and the end of distraction period, 10,20, 30, 40 and60 days after fixation, the regenerating tissue of animals’ lengthened mandibles and that of the other side normal mandibles were harvested to extract RNA andto analyse ACT A, FS mRNA by RT-PCR.Results The expression of ACT A mRNA was not detectable in normal bone tissue and ACT A mRNA began to express at the end of latency period. The expression of ACT AmRNA increased gradually along with the beginning of distraction and reached the peak on the 10th and 20th days of distraction which was 5.04 and 4.98 times as much as that of the end of latency period, respectively. The trend of expression of FS mRNA during mandibular distraction osteogenesis was the same as expression of ACT A mRNA. Conclusion ACT A/FS play an important role during rabbit mandibular distraction osteogenesis.
Objective To summarize the regulatory effect of non-coding RNA (ncRNA) on type H vessels angiogenesis of bone. Methods Recent domestic and foreign related literature about the regulation of ncRNA in type H vessels angiogenesis was widely reviewed and summarized. ResultsType H vessels is a special subtype of bone vessels with the ability to couple bone formation. At present, the research on ncRNA regulating type H vessels angiogenesis in bone diseases mainly focuses on microRNA, long ncRNA, and small interfering RNA, which can affect the expressions of hypoxia inducible factor 1α, platelet derived growth factor BB, slit guidance ligand 3, and other factors through their own unique ways of action, thus regulating type H vessels angiogenesis and participating in the occurrence and development of bone diseases. ConclusionAt present, the mechanism of ncRNA regulating bone type H vessels angiogenesis has been preliminarily explored. With the deepening of research, ncRNA is expected to be a new target for the diagnosis and treatment of vascular related bone diseases.