1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "osteogenic differentiation" 23 results
        • Down-regulation of miR-381-3p inhibits osteogenic differentiation of mouse embryonic palatal mesenchymal cells in 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced cleft palate of fetal mice

          Objective To investigate the correlation between down-regulation of miR-381-3p and inhibition of osteogenic differentiation of mouse embryonic palatal mesenchymal (MEPM) cells in 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)-induced cleft palate of fetal mice. Methods Thirty-two pregnant mice were randomly divided into TCDD group and control group, 16 in each group. On embryonic day 10.5 (E10.5), the pregnant mice in TCDD group were orally administrated with TCDD at dosage of 28 μg/kg, while the pregnant mice in control group received equivalent corn oil. The pregnant mice in each group were sacrificed on E13.5 and E14.5, fetal palates were collected for analysis. The expression of miR-381-3p was detected by real-time fluorescent quantitative PCR and the protein expressions of runt- related transcription factor 2 (RUNX2) and osteopontin (OPN) were detected by Western blot. MEPM cells were extracted from fetal palates on E14.5 in control group and passaged. The 3rd passage cells were cultured with TCDD at dosage of 10 nmol/L for 0, 0.5, 1, 2, and 3 days. The expression of miR-381-3p was detected after 0, 0.5, 1, 2, and 3 days and the protein expressions of RUNX2 and OPN were detected after 0, 1, 2, and 3 days. Then, the 3rd passage cells were divided into 4 groups. The MEPM cells were transfected with miR-381-3p inhibitor (inhibitor group), NC inhibitor (NC inhibitor group) and miR-381-3p mimics (mimics group), NC mimics (NC mimics group) for 48 hours, respectively. And the expressions of miR-381-3p and the protein expressions of RUNX2 and OPN were detected. Results On E13.5 and E14.5, 96 fetal mice in control group and 92 in TCDD group were obtained. The bilateral palates contacted in control group on E14.5, and a gap between the bilateral palates existed in TCDD group. On E13.5 and E14.5, the relative expressions of miR-381-3p and RUNX2 and OPN proteins were significant lower in TCDD group than in control group (P<0.05). The relative expression of miR-381-3p at 0.5 and 1 day after TCDD treatment of MEPM cells were significantly lower than that at 0 day (P<0.05); then, the relative expressions at 2 and 3 days significantly increased, showing no significant difference when compared with that at 0 day (P>0.05). The relative expressions of RUNX2 and OPN proteins at 1, 2, and 3 days were significantly lower than that at 0 day (P<0.05). The relative expressions of miR-381-3p and RUNX2 and OPN proteins significantly lower in inhibitor group than in NC inhibitor group (P<0.05) and higher in mimics group than in NC mimics group (P<0.05). Conclusion Down-regulation of miR-381-3p expression may be associated with inhibition of osteogenic differentiation of MEPM cells in TCDD-induced cleft palate of fetal mice.

          Release date:2019-08-23 01:54 Export PDF Favorites Scan
        • Optimization of the theoretical model for growth rate of mesenchymal stem cells on three-dimensional scaffold under fluid shear stress

          Bone tissue engineering is considered as one of the most promising way to treat large segmental bone defect. When constructing bone tissue engineering graft in vitro, suitable bioreactor is usually used to incubate cell-scaffold complex under perfusion to obtain bone tissue engineering graft with good repair efficiency. However, the theoretical model for growth rate of single cell (especially for stem cell) during this process still has many defects. The difference between stem cells and terminally differentiated cells is always ignored. Based on our previous studies, this study used self-made perfusion apparatus to apply different modes and strengths of fluid shear stress (FSS) to the cells seeded on scaffolds. The effects of FSS on the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. The regression analysis model of the effect of FSS on the single-cell growth rate of MSCs was further established. The results showed that 0.022 5 Pa oscillatory shear stress had stronger ability to promote proliferation and osteogenic differentiation of MSCs, and the growth rate of a single MSC cell under FSS was modified. This study is expected to provide theoretical guidance for optimizing the perfusion culture condition of bone tissue engineering grafts in vitro.

          Release date:2019-12-17 10:44 Export PDF Favorites Scan
        • Effects and mechanism of morroniside on osteogenic differentiation and proliferation of mouse MC3T3-E1 cells

          Objective To study the effects of morroniside (MOR) on the proliferation and osteogenic differentiation of mouse MC3T3-E1 cells. MethodsThe 4th generation MC3T3-E1 cells were randomly divided into 6 groups: control group (group A), MOR low dose group (10 μmol/L, group B), MOR medium-low dose group (20 μmol/L, group C), MOR medium dose group (40 μmol/L, group D), MOR medium-high dose group (80 μmol/L, group E), and MOR high dose group (100 μmol/L, group F). The proliferation activity of each group was detected by cell counting kit 8 (CCK-8) assay; the bone differentiation and mineralized nodule formation of each group were detected by alizarin red staining; real-time fluorescence quantitative PCR (RT-qPCR) was performed to detect cyclin-dependent kinase inhibitor 1A (P21), recombinant Cyclin D1 (CCND1), proliferating cell nuclear antigen (PCNA), alkaline phosphatase (ALP), collagen type Ⅰ (COL-1), bone morphogenetic protein 2 (BMP-2), and adenosine A2A receptor (A2AR) mRNA expressions; Western blot was used to detecte the expressions of osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), and adenosine A2AR protein. ResultsThe CCK-8 assay showed that the absorbance (A) values of groups B to F were significantly higher than that of group A at 24 hours of culture, with group C significantly higher than the rest of the groups (P<0.05). The MOR concentration (20 μmol/L) of group C was selected for the subsequent CCK-8 assay; the results showed that the A values of group C were significantly higher than those of group A at 24, 48, and 72 hours of culture (P<0.05). Alizarin red staining showed that orange-red mineralized nodules were visible in all groups and the number of mineralized nodules was significantly higher in groups B and C than in group A (P<0.05). RT-qPCR showed that the relative expressions of P21, CCND1, and PCNA mRNAs were significantly higher in group C than in group A (P<0.05). The expressions of ALP, BMP-2, COL-1, and adenosine A2AR mRNAs in groups B to E were significantly higher than those in group A, with the expressions of ALP, BMP-2, COL-1 mRNAs in group C significantly higher than the rest of the groups (P<0.05). Compared with group A, the expressions of OPN and RUNX2 proteins in groups B and C were significantly increased, while those in group D and E were significantly inhibited (P<0.05). There was no significant difference between groups B and C and between groups D and E (P>0.05). The relative expression of adenosine A2AR protein in groups B to E was significantly higher than that in group A, with group C significantly higher than the rest of the groups (P<0.05). Conclusion MOR can promote the proliferation and osteogenic differentiation of MC3T3-E1 cells; the mechanism of MOR may be achieved by interacting with adenosine A2AR.

          Release date:2022-08-04 04:33 Export PDF Favorites Scan
        • Study on the gelatin methacryloyl composite scaffold with exogenous transforming growth factor β1 to promote the repair of skull defects

          ObjectiveTo prepare a bone tissue engineering scaffold for repairing the skull defect of Sprague Dawley (SD) rats by combining exogenous transforming growth factor β1 (TGF-β1) with gelatin methacryloyl (GelMA) hydrogel.MethodsFirstly, GelMA hydrogel composite scaffolds containing exogenous TGF-β1 at concentrations of 0, 150, 300, 600, 900, and 1 200 ng/mL (set to groups A, B, C, D, E, and F, respectively) were prepared. Cell counting kit 8 (CCK-8) method was used to detect the effect of composite scaffold on the proliferation of bone marrow mesenchymal stem cells (BMSCs) in SD rats. ALP staining, alizarin red staining, osteocalcin (OCN) immunofluorescence staining, and Western blot were used to explore the effect of scaffolds on osteogenic differentiation of BMSCs, and the optimal concentration of TGF-β1/GelMA scaffold was selected. Thirty-six 8-week-old SD rats were taken to prepare a 5 mm diameter skull bone defect model and randomly divided into 3 groups, namely the control group, the GelMA group, and the GelMA+TGF-β1 group (using the optimal concentration of TGF-β1/GelMA scaffold). The rats were sacrificed at 4 and 8 weeks after operation, and micro-CT, HE staining, and OCN immunohistochemistry staining were performed to observe the repair effect of skull defects.ResultsThe CCK-8 method showed that the TGF-β1/GelMA scaffolds in each group had a promoting effect on the proliferation of BMSCs. Group D had the strongest effect, and the cell activity was significantly higher than that of the other groups (P<0.05). The results of ALP staining, alizarin red staining, OCN immunofluorescence staining, and Western blot showed that the percentage of ALP positive area, the percentage of alizarin red positive area, and the relative expressions of ALP and OCN proteins in group D were significantly higher than those of the other groups (P<0.05), the osteogenesis effect in group D was the strongest. Therefore, in vitro experiments screened out the optimal concentration of TGF-β1/GelMA scaffold to be 600 ng/mL. Micro-CT, HE staining, and OCN immunohistochemistry staining of rat skull defect repair experiments showed that the new bone tissue and bone volume/tissue volume ratio in the TGF-β1+GelMA group were significantly higher than those in the GelMA group and control group at 4 and 8 weeks after operation (P<0.05).ConclusionThe TGF-β1/GelMA scaffold with a concentration of 600 ng/mL can significantly promote the osteogenic differentiation of BMSCs, can significantly promote bone regeneration at the skull defect, and can be used as a bioactive material for bone tissue regeneration.

          Release date:2021-07-29 05:02 Export PDF Favorites Scan
        • Effect of micro RNA-335-5p regulating bone morphogenetic protein 2 on osteogenic differentiation of human bone marrow mesenchymal stem cells

          ObjectiveTo investigate the effect of micro RNA (miR)-335-5p regulating bone morphogenetic protein 2 (BMP-2) on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).MethodshBMSCs were cultured in vitro and randomly divided into control group (group A), miR-335-5p mimics group (group B), miR-335-5p mimics negative control group (group C), miR-335-5p inhibitor group (group D), and miR-335-5p inhibitor negative control group (group E). After grouping treatment and induction of osteogenic differentiation, the osteogenic differentiation of cells in each group was detected by alkaline phosphatase (ALP) and alizarin red staining; the expressions of miR-335-5p and BMP-2, Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (OCN) mRNAs were detected by real-time fluorescence quantitative PCR analysis; the expressions of Runx2, OPN, OCN, and BMP-2 proteins were detected by Western blot.ResultsCompared with group A, the relative proportion of ALP positive cells and the relative content of mineralized nodules, the relative expressions of BMP-2, miR-335-5p, OPN, OCN, Runx2 mRNAs, the relative expressions of Runx2, OPN, OCN, and BMP-2 proteins in group B were significantly increased (P<0.05); the above indexes in group D were significantly decreased (P<0.05); the above indexes between groups C, E and group A were not significantly different (P>0.05).ConclusionmiR-335-5p can up-regulate BMP-2 expression and promote osteogenic differentiation of hBMSCs.

          Release date:2020-07-07 07:58 Export PDF Favorites Scan
        • Mechanism of miR-26a-5p/cAMP response element binding protein 1 molecular axis regulating osteogenic differentiation of adipose-derived mesenchymal stem cells

          Objective To investigate the regulatory effects of miR-26a-5p on the osteogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) by regulating cAMP response element binding protein 1 (CREB1). Methods The adipose tissues of four 3-4 weeks old female C57BL/6 mice were collected and the cells were isolated and cultured by digestion separation method. After morphological observation and identification by flow cytometry, the 3rd-generation cells were subjected to osteogenic differentiation induction. At 0, 3, 7, and 14 days after osteogenic differentiation induction, the calcium deposition was observed by alizarin red staining, ALP activity was detected, miR- 26a-5p and CREB1 mRNA expressions were examined by real-time fluorescence quantitative PCR, and CREB1 protein and its phosphorylation (phospho-CREB1, p-CREB1) level were measured by Western blot. After the binding sites between miR-26a-5p and CREB1 was predicted by the starBase database, HEK-293T cells were used to conduct a dual-luciferase reporter gene experiment to verify the targeting relationship (represented as luciferase activity after 48 hours of culture). Finally, miR-26a-p inhibitor (experimental group) and the corresponding negative control (control group) were transfected into ADSCs. Alizarin red staining, ALP activity, real-time fluorescent quantitative PCR (miR-26a-5p) and Western blot [CREB1, p-CREB1, Runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN)] were performed at 7 and 14 days after osteogenic induction culture. Results The cultured cells were identified as ADSCs. With the prolongation of osteogenic induction culture, the number of calcified nodules and ALP activity significantly increased (P<0.05). The relative expression of miR-26a-5p in the cells gradually decreased, while the relative expressions of CREB1 mRNA and protein, as well as the relative expression of p-CREB1 protein were increased. The differences were significant between 7, 14 days and 0 day (P<0.05). There was no significant difference in p-CREB1/CREB1 between different time points (P>0.05). The starBase database predicted that miR-26a-5p and CREB1 had targeted binding sequences, and the dual-luciferase reporter gene experiment revealed that overexpression of miR-26a-5p significantly suppressed CREB1 wild-type luciferase activity (P<0.05). After 7 and 14 days of osteogenic induction, compared with the control group, the number of calcified nodules, ALP activity, and relative expressions of CREB1, p-CREB1, OCN, and RUNX2 proteins in the experimental group significantly increased (P<0.05). There was no significant difference in p-CREB1/CREB1 between the two groups (P>0.05). Conclusion Knocking down miR-26a-5p promoted the osteogenic differentiation of ADSCs by up-regulating CREB1 and its phosphorylation.

          Release date:2023-05-11 04:44 Export PDF Favorites Scan
        • Regulation of long non-coding RNA in signal pathways related to osteogenic differentiation

          ObjectiveTo summarize the mechanism of long non-coding RNA (lncRNA) in signal pathways related to osteogenic differentiation. Methods Relevant domestic and foreign researches in recent years were consulted. The characteristics and biological functions of lncRNA were introduced, and the specific mechanism of lncRNA regulating related signal pathways in osteogenic differentiation was elaborated. Results The exertion and maintenance of normal function of bone requires the closed coordination of transcription networks and signal pathways. However, most of these signal pathways or networks are dysregulated under pathological conditions that affect bone homeostasis. lncRNA can regulate the differentiation of various bone cells by activating or inhibiting signal pathways to achieve the balance of bone homeostasis, thereby reversing the pathological state of bones and achieving the purpose of treating bone metabolic diseases. Conclusion At present, the research on the mechanism of lncRNA regulating various osteogenic differentiation pathways is still in the early stage. Its in-depth regulator mechanism, especially the cross-talk of complex signal pathways needs to be further studied. And how to apply these molecular targets to clinical treatment is also a big challenge.

          Release date:2022-05-07 02:02 Export PDF Favorites Scan
        • Impact of lithocholic acid on the osteogenic and adipogenic differentiation balance of bone marrow mesenchymal stem cells

          Objective To Investigate the effects of lithocholic acid (LCA) on the balance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Methods Twelve 10-week-old SPF C57BL/6J female mice were randomly divided into an experimental group (undergoing bilateral ovariectomy) and a control group (only removing the same volume of adipose tissue around the ovaries), with 6 mice in each group. The body mass was measured every week after operation. After 4 weeks post-surgery, the weight of mouse uterus was measured, femur specimens of the mice were taken for micro-CT scanning and three-dimensional reconstruction to analyze changes in bone mass. Tibia specimens were taken for HE staining to calculate the number and area of bone marrow adipocytes in the marrow cavity area. ELISA was used to detect the expression of bone turnover markers in the serum. Liver samples were subjected to real-time fluorescence quantitative PCR (RT-qPCR) to detect the expression of key genes related to bile acid metabolism, including cyp7a1, cyp7b1, cyp8b1, and cyp27a1. BMSCs were isolated by centrifugation from 2 C57BL/6J female mice (10-week-old). The third-generation cells were exposed to 0, 1, 10, and 100 μmol/L LCA, following which cell viability was evaluated using the cell counting kit 8 assay. Subsequently, alkaline phosphatase (ALP) staining and oil red O staining were conducted after 7 days of osteogenic and adipogenic induction. RT-qPCR was employed to analyze the expressions of osteogenic-related genes, namely ALP, Runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), as well as adipogenic-related genes including Adiponectin (Adipoq), fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor γ (PPARγ). Results Compared with the control group, the body mass of the mice in the experimental group increased, the uterus atrophied, the bone mass decreased, the bone marrow fat expanded, and the bone metabolism showed a high bone turnover state. RT-qPCR showed that the expressions of cyp7a1, cyp8b1, and cyp27a1, which were related to the key enzymes of bile acid metabolism in the liver, decreased significantly (P<0.05), while the expression of cyp7b1 had no significant difference (P>0.05). Intervention with LCA at concentrations of 1, 10, and 100 μmol/L did not demonstrate any apparent toxic effects on BMSCs. Furthermore, LCA inhibited the expressions of osteogenic-related genes (ALP, Runx2, and OCN) in a dose-dependent manner, resulting in a reduction in ALP staining positive area. Concurrently, LCA promoted the expressions of adipogenic-related genes (Adipoq, FABP4, and PPARγ), and an increase in oil red O staining positive area. Conclusion After menopause, the metabolism of bile acids is altered, and secondary bile acid LCA interferes with the balance of osteogenic and adipogenic differentiation of BMSCs, thereby affecting bone remodelling.

          Release date:2024-01-12 10:19 Export PDF Favorites Scan
        • Content of bone morphogenetic protein 2 in demineralized bone matrix prepared from different long bones and study of the osteogenic properties in vitro

          Objective To measure the concentration of bone morphogenetic protein 2 (BMP-2) in demineralized bone matrix (DBM) prepared from different long bones and to evaluate the osteoinductivity of different DBM on MC3T3-E1 cells. Methods Different bones from the same cadaver donor were used as the initial materials for making DBM, which were divided into ulna group (uDBM), humerus group (hDBM), tibia group (tDBM), and femur group (fDBM) according to the origins, and boiled DBM (cDBM) was taken as the control group. The proteins of DBM were extracted by guanidine hydrochloride, and the concentrations of BMP-2 were determined by ELISA assay. Then the DBM were co-cultured with MC3T3-E1 cells, the proliferation of MC3T3-E1 cells was observed by cell counting kit 8 (CCK-8) assay. The osteogenic differentiation ability of MC3T3-E1 cells was qualitatively observed by alizarin red, alkaline phosphatase (ALP), and Van Gieson staining, and the osteogenic differentiation ability of MC3T3-E1 cells was quantitatively analyzed by ALP content. Linear regression was used to analyze the effect of BMP-2 concentration in DBM on ALP synthesis. ResultsThere were significant differences in the concentration of BMP-2 among the DBM groups (P<0.05). The concentrations of BMP-2 in the lower limb long bone were higher than those in the upper limb long bone, and the concentration of BMP-2 in the fDBM group was about 35.5 times that in the uDBM group. CCK-8 assay showed that the cells in each group continued to proliferate within 5 days of co-culture, and the absorbance (A) values at different time points were in the order of cDBM group<uDBM group<hDBM group<tDBM group<fDBM group. After co-culture for 14 days, the expressions of ALP, calcified nodules, and collagen fibers in each group were consistent with the distribution of BMP-2 concentration in DBM. The order of ALP content from low to high was cDBM group<uDBM group<hDBM group<tDBM group<fDBM group, and the differences between the groups were significant (P<0.05). Linear regression analysis showed that \begin{document}$\hat y $\end{document}=0.361+0.017x, the effect of BMP-2 concentration in DBM on cellular ALP content was significant (t=3.552, P=0.005); for every 1 ng/g increase in BMP-2 concentration, ALP content would increase by 0.017 [95%CI (0.006, 0.027)] U/100 mL. Conclusion The concentration of natural BMP-2 in different long bones varies greatly, and the lower limb long bone is higher than the upper limb long bone. The harvested location of bone material was an important factor affecting the osteoinductivity of DBM.

          Release date:2023-08-09 01:37 Export PDF Favorites Scan
        • Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells

          ObjectiveTo explore the effect of vascular endothelial growth factor 165 (VEGF165)-loaded porous poly (ε-caprolactone) (PCL) scaffolds on the osteogenic differentiation of adipose-derived stem cells (ADSCs).MethodsThe VEGF165-loaded porous PCL scaffolds (written, Sf-g/VEGF) were fabricated through a combination of solvent casting/salt leaching and a thermal-induced phase separation technique and then observed under scanning electron microscope (SEM). The release kinetics was determined by ELISA kit. The ADSCs were isolated from inguinal fat pads of 15 Sprague Dawley rats and cultured. The passage 3-4 ADSCs were seeded into the scaffolds, and then cultured in vitro for 7 days. The passage 3-4 ADSCs were seeded into the porous PCL scaffolds (written, Sf-g) as control. The alizarin red S (ARS) staining, ARS activity assay, and real-time quantitative PCR (RT-PCR) were performed to measure the osteogenic differentiation of ADSCs in vitro. Six Sprague Dawley rats were recruited to prepare the bilateral calvarial bone defects models (n=12). The 12 calvarial bone defects were randomly divided into 3 group (n=4). The defects of negative control group were not treated; the defects of Sf-g group and Sf-g/VEGF group were repaired with ADSCs-Sf-g scaffold complex and ADSCs-Sf-g scaffold complex, respectively. At 8 weeks after transplantation, the Micro-CT and HE staining were conducted to evaluate the osteogenic effects in vivo.ResultsThe morphology of the Sf-g/VEGF scaffolds were porous and well-connected, and the cumulative release rate was approximately 80% in 120 hours. The ARS staining showed that the ARS activity of Sf-g/VEGF group were stronger than that of Sf-g group (t=10.761, P=0.000). The mRNA expressions of osteogenic specific markers [special AT-rich sequence protein 2 (Satb2), alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN)] were significantly higher in Sf-g/VEGF group than in Sf-g group (P<0.05). The results of Micro-CT and HE staining also confirmed the promotion effect of Sf-g/VEGF scaffolds. All defects of 2 groups were partially repaired by new bone tissue, especially in Sf-g/VEGF group. The volume and area of new bone tissue were significantly higher in Sf-g/VEGF group than in Sf-g group (P<0.05).ConclusionThe VEGF165-loaded scaffolds can significantly improve the osteogenic differentiation of ADSCs both in vitro and in vivo.

          Release date:2018-03-07 04:35 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品