1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "periosteum" 16 results
        • ABSTRACTSTHE EXPERIMENTAL CTUDY OF THE REPAIR OF LONG BONE DEFECTS BY CCOMBINED GRAFTING OF HOMOGENOUS DECALCIFIED BONE MATRIX(DBM) WITH CENTRALLY ENVELOPED VASCULARIZED PERIOSTEUM

          The repair of the long bone defects by combined grafting of homogenous deealcified bene matrix(DBM ) with centrally enveloped vascularized periosteum Was reported as a new techniqe. Theroentgenograms,bone mineral count and histologic examination were done. The results showed thatthis method was beneficial and had better effect on prornoting healing of the long bene defeets fromone stage operation The oporative proeedure was described on deatil It was considered that the homogenous DBM ...

          Release date:2016-09-01 11:18 Export PDF Favorites Scan
        • REPAIR OF CARTILAGE DEFECT IN JOINT WITH TRANSPLANTATION OF CRYOPRESERVED HOMOLOGOUS EMBRYONIC PERIOSFEUM OF RABBITS

          In order to repair cartilage defect in joint with transplantation of cryopreserved homologous embryonic periosteum, 30 rabbits were used and divided into two groups. A 4 mm x 7 mm whole thickness cartilage defect was made in the patellar groove of femur of each rabbit. The homologous embryonic rabbit skull periosteum (ERSP), preserved in two-step freezing schedule, was transplanted onto the cartilage defect of joints of one group and autogenous periosteal graft was done in the joint defect of the other group. The knees were not immobilized, following operation and 16 weeks later, the newly formed tissue in the defects were assessed by gross observation, histochemical examination and biochemical analysis. The results showed that new hyaline-like cartilage was formed in the cryopreserved ERSP grafted knee, and had no significant difference from that of the knee receiving autogenous periosteal graft, but had significant difference from that of the fresh ERSP grafted knee and the non-grafted knee. Furthermore, the new hyaline-like cartilage had the biochemical characteristics of a fibrous cartilage. The conclusion was that this method might be feasible to repair articular cartilage defects.

          Release date:2016-09-01 11:07 Export PDF Favorites Scan
        • REPAIR OF FEMORAL NECK FRACTURE WITH VASCULAR PEDICLED PERIOSTEUM FLAP TRANSFER IN YOUNG AND MIDDLE-AGED

          Objective To estimate clinical effect ofspin iliac deep vascular pedicled periosteum flap in repairing traumatic femoral neck of theca inside fracture in young and middleaged. Methods From April 1993 to September 2001, 12 cases of traumatic femoral neck fracture were given diaplastic operation with fixation of 3 centre hollow pressed bolt and were conducted under os traction bed and "C" arm X-ray machine. Spin iliac deep vascular pedicled periosteum flap wasstripped off, and transferred to the front of femoral neck fundus,then transplanted to the narrow inside of fracture through outer open door of articular capsule.Results All patients were followed up for 17 years. All fracture healedwithout femoral head necrosis, but mild arthritis appeared in 7 cases.Conclusion Vascular pedicled periosteum flap transfer of young and middle-aged femoral neck fracture, by decompression of femoral neck and reconstruction of blood circulation, can promote the fracture healing and decrease the wound and blood circulation destroy.

          Release date: Export PDF Favorites Scan
        • THE ANATOMIC STUDY AND CLINICAL APPLICATION OF THE BONE (PERIOSTEUM) FLAP PEDICLED WITH UPPER MUSCULAR BRANCHES OF LATERAL FEMORAL MUSCLE

          OBJECTIVE: To explore the anatomic feature and clinical application of the bone (periosteum) flap pedicled with upper muscular branches of lateral femoral muscle. METHODS: The anatomic features and distribution of upper muscular branches of lateral femoral muscle were observed in the lower extremities of 40 adult cadavers. From February 1989 to February 1999, 7 cases with bone defect or nonunion of upper part of femur were treated with transfer of bone (periosteum) flap pedicled with upper muscular branches of lateral femoral muscle. RESULTS: The upper muscular branches of lateral femoral muscle originated from the transversal branch of lateral circumflex femoral artery. The musculoperiosteal branch and periosteal branch were originated at 16.8 +/- 3.0 cm below the greater trochanter. The diameter and length of musculoperiosteal branch were 1.4 to 1.7 mm and 2.7 to 5.6 cm, those of the periosteal branch were 0.4 to 0.6 mm and 1.2 to 1.5 cm respectively. Bone union achieved in 10 to 18 weeks after operation in all 7 cases after 18 to 42 months follow-up. The motion of hip joint reached 180 degrees in 4 cases, 120 degrees in 2 cases and 65 degrees in 1 case. The donor area recovered well. CONCLUSION: The bone (periosteum) flap pedicled with upper muscular branches of lateral femoral muscle is an effective alternative for repairing the bone defect or nonunion of the upper or middle part of femur.

          Release date:2016-09-01 10:21 Export PDF Favorites Scan
        • REPAIR OF LARGE ARTICULAR CARTILAGE DEFECT OF HIP WITH ALLOGRAFT OF SKULL PERIOSTEUM

          It is very difficult to repair large articular cartilage defect of the hip. From May 1990 to April 1994, 47 hips in 42 patients of large articuler cartilage defects were repaired by allograft of skull periosteum. Among them, 14 cases, whose femoral heads were grade. IV necrosis, were given deep iliac circumflex artery pedicled iliac bone graft simultaneously. The skull periosteum had been treated by low tempreturel (-40 degrees C) before and kept in Nitrogen (-196 degrees C) till use. During the operation, the skull periosteum was sutured tightly to the femoral head and sticked to the accetabulum by medical ZT glue. Thirty eight hips in 34 patients were followed up for 2-6 years with an average of 3.4 years. According to the hip postoperative criteria of Wu Zhi-kang, 25 cases were excellent, 5 cases very good, 3 cases good and 1 case fair. The mean score increased from 6.4 before operation to 15.8 after operation. The results showed, in compare with autograft of periosteum for biological resurface of large articular defect, this method is free of donor-site morbidity. Skull periosteum allograft was effective for the treatment of large articular cartilage defects in hip.

          Release date:2016-09-01 11:07 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY OF BONE REPAIR INDUCED BY CRYOPRESERVED ALLOGRAFT PERIOSTEUM AND FETAL BONE COMPOSITION IN BONE DEFECT

          OBJECTIVE: To investigate the repairing effect of transplantation of allogeneic fetal bone in combination with a covering cryopreserved periosteal allograft to bone defect. METHODS: Twenty Long-eared white male rabbits were chosen as experimental model of bilateral 12 mm combined bony and periosteal radial defect. Cryopreserved allograft periosteum with allogeneic fetal bone were implanted in the left defect as experimental side and fetal bone was simply transplanted in the right defect as control side. Bone repair process in the two groups were compared by macroscopy, microscopy, roentgenograms and the contents of calcium and phosphate in the defect area at 2, 4, 8 and 12 weeks after transplantation. RESULTS: There was significant statistic difference in the contents of calcium and phosphate between the experimental and control sides at 4, 8 and 12 weeks after transplantation (P lt; 0.05). With time passing by, the contents of calcium and phosphate have the increasing trends. In the experimental group, lamella bone was seen and medullary canal recanalized at 8 weeks postoperatively. The histological section showed the bone lacuna and lamella bone were formed. CONCLUSION: It suggests that allogeneic fetal bone in combination with a covering cryopreserved periosteal allograft can promote bone repair, and allogeneic fetal bone is excellent bone substitute.

          Release date:2016-09-01 10:21 Export PDF Favorites Scan
        • THE PRIMARY OBSERVATION OF TISSUE ENGINEERED PERIOSTEUM OSTEOGENESIS IN VIVO IN ALLOGENICRABBIT

          【Abstract】 Objective To investigate the in vivo osteogenic feasibil ity of tissue engineered periosteum constructedby porcine SIS and BMSCs in allogenic New Zealand rabbit. Methods The tissue engineered periosteum constructed by SIS scaffold and BMSCs was prepared in vitro .Twelve 2-month-old New Zealand rabbits were used in the experiments. The 1.5-2.0 cm critical bone defects were made in the both sides of radius of the animals. The tissue engineered periosteum was grafted into one side defect randomly, while the other side defect was only grafted SIS. Four weeks after operation, the forearms of all animals were checked by X-ray. Then, animals were sacrificed to harvest the specimen which were treated promptly for HE and Masson staining.The X-ray film and the morphological tissue staining outcome were evaluated qual itatively. Results After operation,all animals had a normal behavior and diet; the incision healed normally; the forearm could move normally for bearing weight.The tissue engineered periosteum constructed by allogenic BMSCs and heterogeneic SIS scaffold could form new bone tissue, andbridged the bone defect which could be confirmed either in X-ray film or histological staining. The newly formed bone tissue had similar bone density to normal bone. A lot of irregular newly formed vessels and medullary cavity inserted in the newly borned tissue. No lymphocytes infiltrated in histological examination. While the control side had no any osteogenesis neithter in X-ray, nor in HE and Masson staining inspecting; the defect space only occupied with some connective tissue. Conc lu sion Tissue engineered periosteum can form new bone in allogenic rabbit and has the feasibil ity to repair the segmental diaphysis defect.

          Release date:2016-09-01 09:09 Export PDF Favorites Scan
        • DEVELOPMENT OF THE TISSUE-AUTOGRAFTING

          Objective To introduce the current situation and prospect of the tissue-autografting, such as the flaps, muscle flaps, and bone(periosteum) flaps, andits application in reparative and reconstructive surgery. Methods Based on our own experiences and combined with the review of the literature at home and abroad, the latest development of the tissue autografting was analyzed. Results The femoral anterolateral flap, latissimus dorsi muscle flap, upper arm lateral flap, scap flap, temporal fascial flap and perforator flap are the frequently used in clinic. Of all the perforator flap had such advantages as better repair of the recipient sites and less damage of the donor site. Beacause of more advantages of the free myocutaneous flap transplantation, it substituted thefree muscle transplantation. The atissimus dorsi muscle myocutaneous flap was the most frequently used in the transplant of the vessels, with preserved function of the thoracodorsal nerve or with repair of the defected tissues by the bridge. The most common donor sites of the bone were ribs,iliac bone,fibula andscapula, so the severe bone defects or the bone nonunion, femoral head ischemic necrosis, and the bone graft from the tumor removal could be managed with the bones from those sites. Conclusion The autografting in repairing the tissue defect has become one of the most important surgical techniques in reparative and reconstructive surgery.

          Release date:2016-09-01 09:25 Export PDF Favorites Scan
        • REPAIR OF LARGE SEGMENTAL BONE DEFECT BY TISSUE ENGINEERED PERIOSTEUM AND DEPROTEINIZED BONE SCAFFOLD IN RABBITS

          ObjectiveTo evaluate the effect of tissue engineered periosteum on the repair of large diaphysis defect in rabbit radius, and the effect of deproteinized bone (DPB) as supporting scaffolds of tissue engineering periosteum. MethodsBone marrow mesenchymal stem cells (BMSCs) were cultured from 1-month-old New Zealand Rabbit and osteogenetically induced into osteoblasts. Porcine small intestinal submucosa (SIS) scaffold was produced by decellular and a series mechanical and physiochemical procedures. Then tissue engineered periosteum was constructed by combining osteogenic BMSCs and SIS, and then the adhesion of cells to scaffolds was observed by scanning electron microscope (SEM). Fresh allogeneic bone was drilled and deproteinized as DPB scaffold. Tissue engineered periosteum/DPB complex was constructed by tissue engineered periosteum and DPB. Tissue engineered periosteum was "coat-like" package the DPB, and bundled with absorbable sutures. Forty-eight New Zealand white rabbits (4-month-old) were randomly divided into 4 groups (groups A, B, C, and D, n=12). The bone defect model of 3.5 cm in length in the left radius was created. Defect was repaired with tissue engineered periosteum in group A, with DPB in group B, with tissue engineered periosteum/DPB in group C; defect was untreated in group D. At 4, 8, and 12 weeks after operation, 4 rabbits in each group were observed by X-ray. At 8 weeks after operation, 4 rabbits of each group were randomly sacrificed for histological examination. ResultsSEM observation showed that abundant seeding cells adhered to tissue engineered periosteum. At 4, 8, and 12 weeks after operation, X-ray films showed the newly formed bone was much more in groups A and C than groups B and D. The X-ray film score were significantly higher in groups A and C than in groups B and D, in group A than in group C, and in group B than in group D (P<0.05). Histological staining indicated that there was a lot of newly formed bone in the defect space in group A, with abundant newly formed vessels and medullary cavity. While in group B, the defect space filled with the DPB, the degradation of DPB was not obvious. In group C, there was a lot of newly formed bone in the defect space, island-like DPB and obvious DPB degradation were seen in newly formed bone. In group D, the defect space only replaced by some connective tissue. ConclusionTissue engineered periosteum constructed by SIS and BMSCs has the feasibility to repair the large diaphysis defect in rabbit. DPB isn't an ideal support scaffold of tissue engineering periosteum, the supporting scaffolds of tissue engineered periosteum need further exploration.

          Release date: Export PDF Favorites Scan
        • PRIMARY STUDY ON TISSUE ENGINEERED PERIOSTEUM OSTEOGENESIS TO REPAIR SCAPULA DEFECT IN VIVO IN ALLOGENIC RABBIT

          ObjectiveTo investigate the feasibility of tissue engineered periosteum (TEP) constructed by porcine small intestinal submucosa (SIS) and bone marrow mesenchymal stem cells (BMSCs) of rabbit to repair the large irregular bone defects in allogenic rabbits. MethodsThe BMSCs were cultivated from the bone marrow of New Zealand white rabbits (aged, 2 weeks-1 month). SIS was fabricated by porcine proximal jejunum. The TEP constructed by SIS scaffold and BMSCs was prepared in vitro. Eighteen 6-month-old New Zealand white rabbits whose scapula was incompletely resected to establish one side large irregular bone defects (3 cm×3 cm) model. The bone defects were repaired with TEP (experimental group,n=9) and SIS (control group,n=9), respectively. At 8 weeks after operation, the rabbits were sacrificed, and the implants were harvested. The general condition of the rabbits was observed; X-ray radiography and score according to Lane-Sandhu criteria, and histological examination (HE staining and Masson staining) were performed. ResultsAfter operation, all animals had normal behavior and diet; the incision healed normally. The X-ray results showed new bone formation with normal bone density in the defect area of experimental group; but no bone formation was observed in control group. The X-ray score was 6.67±0.32 in experimental group and was 0.32±0.04 in control group, showing significant difference (t=19.871,P=0.001). The general observation of the specimens showed bone healing at both ends of the defect, and the defect was filled by new bone in experimental group; no new bone formed in the control group. The histological staining showed new bone tissue where there were a lot of new vessels and medullary cavity, and no macrophages or lymphocytes infiltration was observed in the defect area of experimental group; only some connective tissue was found in the control group. ConclusionTEP constructed by porcine SIS and BMSCs of rabbit can form new bone in allogenic rabbit and has the feasibility to repair the large irregular bone defects.

          Release date: Export PDF Favorites Scan
        2 pages Previous 1 2 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品