1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "predictive model" 24 results
        • A nomogram model for predicting risk of lung adenocarcinoma by FUT7 methylation combined with CT imaging features

          Objective The management of pulmonary nodules is a common clinical problem, and this study constructed a nomogram model based on FUT7 methylation combined with CT imaging features to predict the risk of adenocarcinoma in patients with pulmonary nodules. Methods The clinical data of 219 patients with pulmonary nodules diagnosed by histopathology at the First Affiliated Hospital of Zhengzhou University from 2021 to 2022 were retrospectively analyzed. The FUT7 methylation level in peripheral blood were detected, and the patients were randomly divided into training set (n=154) and validation set (n=65) according to proportion of 7:3. They were divided into a lung adenocarcinoma group and a benign nodule group according to pathological results. Single-factor analysis and multi-factor logistic regression analysis were used to construct a prediction model in the training set and verified in the validation set. The receiver operating characteristic (ROC) curve was used to evaluate the discrimination of the model, the calibration curve was used to evaluate the consistency of the model, and the clinical decision curve analysis (DCA) was used to evaluate the clinical application value of the model. The applicability of the model was further evaluated in the subgroup of high-risk CT signs (located in the upper lobe, vascular sign, and pleural sign). Results Multivariate logistic regression analysis showed that female, age, FUT7_CpG_4, FUT7_CpG_6, sub-solid nodules, lobular sign and burr sign were independent risk factors for lung adenocarcinoma (P<0.05). A column-line graph prediction model was constructed based on the results of the multifactorial analysis, and the area under the ROC curve was 0.925 (95%CI 0.877 - 0.972 ), and the maximum approximate entry index corresponded to a critical value of 0.562, at which time the sensitivity was 89.25%, the specificity was 86.89%, the positive predictive value was 91.21%, and the negative predictive value was 84.13%. The calibration plot predicted the risk of adenocarcinoma of pulmonary nodules was highly consistent with the risk of actual occurrence. The DCA curve showed a good clinical net benefit value when the threshold probability of the model was 0.02 - 0.80, which showed a good clinical net benefit value. In the upper lobe, vascular sign and pleural sign groups, the area under the ROC curve was 0.903 (95%CI 0.847 - 0.959), 0.897 (95%CI 0.848 - 0.945), and 0.894 (95%CI 0.831 - 0.956). Conclusions This study developed a nomogram model to predict the risk of lung adenocarcinoma in patients with pulmonary nodules. The nomogram has high predictive performance and clinical application value, and can provide a theoretical basis for the diagnosis and subsequent clinical management of pulmonary nodules.

          Release date: Export PDF Favorites Scan
        • Construction and validation of risk prediction model for breast cancer bone metastasis

          ObjectiveTo identify the risk factors of bone metastasis in breast cancer and construct a predictive model. MethodsThe data of breast cancer patients met inclusion and exclusion criteria from 2010 to 2015 were obtained from the SEER*Stat database. Additionally, the data of breast cancer patients diagnosed with distant metastasis in the Affiliated Hospital of Southwest Medical University from 2021 to 2023 were collected. The patients from the SEER database were randomly divided into training (70%) and validation (30%) sets using R software, and the breast cancer patients from the Affiliated Hospital of Southwest Medical University were included in the validation set. The univariate and multivariate logistic regressions were used to identify risk factors of breast cancer bone metastasis. A nomogram predictive model was then constructed based on these factors. The predictive effect of the nomogram was evaluated using the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis. ResultsThe study included 8 637 breast cancer patients, with 5 998 in the training set and 2 639 (including 68 patients in the Affiliated Hospital of Southwest Medical University) in the validation set. The statistical differences in the race and N stage were observed between the training and validation sets (P<0.05). The multivariate logistic regression analysis revealed that being of white race, having a low histological grade (Ⅰ–Ⅱ), positive estrogen and progesterone receptors status, negative human epidermal growth factor receptor 2 status, and non-undergoing surgery for the primary breast cancer site increased the risk of breast cancer bone metastasis (P<0.05). The nomogram based on these risk factors showed that the AUC (95% CI) of the training and validation sets was 0.676 (0.533, 0.744) and 0.690 (0.549, 0.739), respectively. The internal calibration using 1 000 Bootstrap samples demonstrated that the calibration curves for both sets closely approximated the ideal 45-degree reference line. The decision curve analysis indicated a stronger clinical utility within a certain probability threshold range. ConclusionsThis study constructs a nomogram predictive model based on factors related to the risk of breast cancer bone metastasis, which demonstrates a good consistency between actual and predicted outcomes in both training and validation sets. The nomogram shows a stronger clinical utility, but further analysis is needed to understand the reasons of the lower differentiation of nomogram in both sets.

          Release date:2024-02-28 02:42 Export PDF Favorites Scan
        • AI-based diagnostic accuracy and prognosis research reporting guideline: interpretation of the TRIPOD+AI statement

          With the increasing availability of clinical and biomedical big data, machine learning is being widely used in scientific research and academic papers. It integrates various types of information to predict individual health outcomes. However, deficiencies in reporting key information have gradually emerged. These include issues like data bias, model fairness across different groups, and problems with data quality and applicability. Maintaining predictive accuracy and interpretability in real-world clinical settings is also a challenge. This increases the complexity of safely and effectively applying predictive models to clinical practice. To address these problems, TRIPOD+AI (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis+artificial intelligence) introduces a reporting standard for machine learning models. It is based on TRIPOD and aims to improve transparency, reproducibility, and health equity. These improvements enhance the quality of machine learning model applications. Currently, research on prediction models based on machine learning is rapidly increasing. To help domestic readers better understand and apply TRIPOD+AI, we provide examples and interpretations. We hope this will support researchers in improving the quality of their reports.

          Release date:2025-02-08 09:34 Export PDF Favorites Scan
        • The predictive value of four inflammatory indices for postoperative survival prognosis of Siewert type Ⅱ esophagogastric junction adenocarcinoma

          Objective To evaluate the clinical application value of four inflammatory indices [monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR)] in predicting postoperative mortality risk in patients with Siewert type Ⅱ esophagogastric junction adenocarcinoma, and to explore the predictive performance of four inflammatory indices. Methods This retrospective study collected clinical data from 310 patients with Siewert typeⅡ esophagogastric junction adenocarcinoma who were admitted to the Second Hospital of Lanzhou University between October 2016 and March 2023, and met the inclusion and exclusion criteria. Univariate analysis was used to initially screen variables related to postoperative mortality risk. The variance inflation factor (VIF) analysis was performed to assess multicollinearity issues, and multivariate regression analysis was used to further reveal the independent effects of key variables on postoperative mortality risk. The performance of the predictive models was evaluated using receive operatior characteristic curves and Kaplan-Meier survival analysis, and the effects of different inflammatory indices on patient survival were explored. Finally, machine learning methods such as Light GBM, random forest, support vector machine (SVM), and XGBoost were used to evaluate the predictive performance of the four inflammatory indices. Results The four inflammatory indices were significantly associated with postoperative mortality risk in patients with Siewert type Ⅱ esophagogastric junction adenocarcinoma (MLR: HR=2.6884, 95% CI 1.4559 to 4.9642, P=0.002; PLR: HR=1.0022, 95% CI1.0001 to 1.0043, P=0.041; SII: HR=1.0003, 95% CI1.0001 to 1.0006, P=0.002; NLR: HR=1.0697, 95% CI 1.0277 to 1.1134, P=0.001). Machine learning model results showed that NLR had the best performance in the random forest model, with an AUC of 0.863 in the training set and an AUC of 0.834 in the test set. Conclusion Preoperative clinical indicators, especially the NLR inflammatory factor, are of significant importance in predicting the postoperative mortality risk of patients with Siewert typeⅡ esophagogastric junction adenocarcinoma.

          Release date: Export PDF Favorites Scan
        • Interpretation of the TRIPOD-LLM reporting guideline for studies using large language models

          As the volume of medical research using large language models (LLM) surges, the need for standardized and transparent reporting standards becomes increasingly critical. In January 2025, Nature Medicine published statement titled by TRIPOD-LLM reporting guideline for studies using large language models. This represents the first comprehensive reporting framework specifically tailored for studies that develop prediction models based on LLM. It comprises a checklist with 19 main items (encompassing 50 sub-items), a flowchart, and an abstract checklist (containing 12 items). This article provides an interpretation of TRIPOD-LLM’s development methods, primary content, scope, and the specific details of its items. The goal is to help researchers, clinicians, editors, and healthcare decision-makers to deeply understand and correctly apply TRIPOD-LLM, thereby improving the quality and transparency of LLM medical research reporting and promoting the standardized and ethical integration of LLM into healthcare.

          Release date:2025-06-24 11:15 Export PDF Favorites Scan
        • Analysis of prognostic risk factors and predictive prognostic modeling in septic patients with bacterial blood stream infections

          ObjectiveTo analyze the prognostic factors of patients with bacterial bloodstream infection sepsis and to identify independent risk factors related to death, so as to potentially develop one predictive model for clinical practice. Method A non-intervention retrospective study was carried out. The relative data of adult sepsis patients with positive bacterial blood culture (including central venous catheter tip culture) within 48 hours after admission were collected from the electronic medical database of the First Affiliated Hospital of Dalian Medical University from January 1, 2018 to December 31, 2019, including demographic characters, vital signs, laboratory data, etc. The patients were divided into a survival group and a death group according to in-hospital outcome. The risk factors were analyzed and the prediction model was established by means of multi-factor logistics regression. The discriminatory ability of the model was shown by area under the receiver operating characteristic curve (AUC). The visualization of the predictive model was drawn by nomogram and the model was also verified by internal validation methods with R language. Results A total of 1189 patients were retrieved, and 563 qualified patients were included in the study, including 398 in the survival group and 165 in the death group. Except gender and pathogen type, other indicators yielded statistical differences in single factor comparison between the survival group and the death group. Independent risk factors included in the logistic regression prediction model were: age [P=0.000, 95% confidence interval (CI) 0.949 - 0.982], heart rate (P=0.000, 95%CI 0.966 - 0.987), platelet count (P=0.009, 95%CI 1.001 - 1.006), fibrinogen (P=0.036, 95%CI 1.010 - 1.325), serum potassium ion (P=0.005, 95%CI 0.426 - 0.861), serum chloride ion (P=0.054, 95%CI 0.939 - 1.001), aspartate aminotransferase (P=0.03, 95%CI 0.996 - 1.000), serum globulin (P=0.025, 95%CI 1.006 - 1.086), and mean arterial pressure (P=0.250, 95%CI 0.995 - 1.021). The AUC of the prediction model was 0.779 (95%CI 0.737 - 0.821). The prediction efficiency of the total score of the model's nomogram was good in the 210 - 320 interval, and mean absolute error was 0.011, mean squared error was 0.00018. Conclusions The basic vital signs within 48 h admitting into hospital, as well those homeostasis disordering index indicated by coagulation, liver and renal dysfunction are highly correlated with the prognosis of septic patients with bacterial bloodstream infection. Early warning should be set in order to achieve early detection and rescue patients’ lives.

          Release date:2023-10-18 09:49 Export PDF Favorites Scan
        • Predictive value of simple predictive model for prognosis of patients with acute ST-segment elevation myocardial infarction

          ObjectiveTo explore the predictive value of a simple prediction model for patients with acute myocardial infarction.MethodsClinical data of 280 patients with acute ST-segment elevation myocardial infarction (STEMI) in the Department of Emergence Medicine, West China Hospital of Sichuan University from January 2019 to January 2020 were retrospectively analyzed. The patients were divided into a death group (n=34) and a survival group (n=246).ResultsAge, heart rate, body mass index (BMI), global registry of acute coronary events (GRACE), thrombolysis in myocardial infarction trial (TIMI) score, blood urea nitrogen, serum cystatin C and D-dimer in the survival group were less or lower than those in the death group (P<0.05). Left ventricle ejection fraction and the level of albumin, triglyceride, total cholesterol and low density lipoprotein cholesterol were higher and the incidence of Killip class≥Ⅲ was lower in the survival group compared to the death group (P<0.05). Multivariate logistic regression analysis showed that age, BMI, heart rate, diastolic blood pressure, and systolic blood pressure were independent risk factors for all-cause death in STEMI patients. Receiver operating characteristic (ROC) curve analysis showed that the area under the curve of simple prediction model for predicting death was 0.802, and similar to that of GRACE (0.816). The H-L test showed that the simple model had high accuracy in predicting death (χ2=3.77, P=0.877). Pearson correlation analysis showed that the simple prediction model was significantly correlated with the GRACE (r=0.651, P<0.001) and coronary artery stenosis score (r=0.210, P=0.001).ConclusionThe simple prediction model may be used to predict the hospitalization and long-term outcomes of STEMI patients, which is helpful to stratify high risk patients and to guide treatment.

          Release date:2021-11-25 03:54 Export PDF Favorites Scan
        • A predictive model for the risk of lymph node metastasis in colorectal cancer

          ObjectiveTo explore the risk factors of lymph node metastasis in patients with colorectal cancer, and construct a risk prediction model to provide reference for clinical diagnosis and treatment.MethodsThe clinicopathological data of 416 patients with colorectal cancer who underwent radical resection of colorectal cancer in the Department of Gastrointestinal Surgery of the Second Affiliated Hospital of Nanchang University from May 2018 to December 2019 were retrospectively analyzed. The correlation between lymph node metastasis and preoperative inflammatory markers, clinicopathological factors and tumor markers were analyzed. Logistic regression was used to analyze the risk factors of lymph node metastasis, and R language was used to construct nomogram model for evaluating the risk of colorectal cancer lymph node metastasis before surgery, and drew a calibration curve and compared with actual observations. The Bootstrap method was used for internal verification, and the consistency index (C-index) was calculated to evaluate the accuracy of the model.ResultsThe results of univariate analysis showed that factors such as sex, age, tumor location, smoking history, hypertension and diabetes history were not significantly related to lymph node metastasis (all P>0.05). The factors related to lymph node metastasis were tumor size, T staging, tumor differentiation level, fibrinogen, neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), fibrinogen/albumin ratio (FAR), fibrinogen/prealbumin ratio (FpAR), CEA, and CA199 (all P<0.05). The results of logistic regression analysis showed the FpAR [OR=3.630, 95%CI (2.208, 5.968), P<0.001], CA199 [OR=2.058, 95%CI (1.221, 3.470), P=0.007], CEA [OR=2.335, 95%CI (1.372, 3.975), P=0.002], NLR [OR=2.532, 95%CI (1.491, 4.301), P=0.001], and T staging were independent risk factors for lymph node metastasis. The above independent risk factors were enrolled to construct regression equation and nomogram model, the area under the ROC curve of this equation was 0.803, and the sensitivity and specificity were 75.2% and 73.5%, respectively. The consistency index (C-index) of the nomogram prediction model in this study was 0.803, and the calibration curve showed that the result of predicting lymph node metastasis was highly consistent with actual observations.ConclusionsFpAR>0.018, NLR>3.631, CEA>4.620 U/mL, CA199>21.720 U/mL and T staging are independent risk factors for lymph node metastasis. The nomogram can accurately predict the risk of lymph node metastasis in patients with colorectal cancer before surgery, and provide certain assistance in the formulation of clinical diagnosis and treatment plans.

          Release date:2021-09-06 03:43 Export PDF Favorites Scan
        • Advances in machine learning in treatment and diagnosis of liver disease

          Objective To summarize advances in the application of machine learning in the diagnosis and treatment of liver disease. Method The recent literatures on the progress of machine learning in the diagnosis, treatment and prognosis of liver diseases were reviewed. Results Machine learning could be used to diagnose and categorize substantial liver lesions, tumourous lesions and rare liver diseases at an early stage, which could facilitate clinicians to take timely and appropriate treatment measures. Machine learning was helpful in informing clinicians in choosing the best treatment decision, which was conducive to reducing medical risks. It could also help to determine the prognosis of patients in a comprehensive manner, and provide assistance in formulating early rehabilitation treatment plans, adjusting follow-up strategies and improving future prognosis. Conclusions Multiple types of machine learning algorithms have achieved positive results in the clinical application of liver diseases by constructing different prediction models, and have great potential and excellent prospects in multiple aspects such as diagnosis, treatment and prognosis of liver diseases.

          Release date: Export PDF Favorites Scan
        • Establishment and validation of a risk prediction model based on CT and serum markers for disease progression in CTD-ILD patients

          Objective To clarify the specific clinical predictive efficacy of CT and serological indicators for the progression of connective tissue disease-associated interstitial lung disease (CTD-ILD) to progressive pulmonary fibrosis (PPF). Methods Patients who were diagnosed with CTD-ILD in Chest Hospital of Zhengzhou University Between January 2020 and December 2021 were recruited in the study. Clinical data and high-resolution CT results of the patients were collected. The patients were divided into a stable group and a progressive group (PPF group) based on whether PPF occurred during follow-up. COX proportional hazards regression was used to identify risk factors affecting the progression of CTD-ILD to PPF, and a risk prediction model was established based on the results of the COX regression model. The predictive efficacy of the model was evaluated through internal cross-validation. Results A total of 194 patients diagnosed with CTD-ILD were enrolled based on the inclusion and exclusion criteria. Among them, 34 patients progressed to PPF during treatment, and 160 patients did not progress. The variables obtained at lambda$1se in LASSO regression were ANCA associated vasculitis, lymphocytes, albumin, erythrocyte sedimentation rate, and serum ferritin. Multivariate COX regression analysis showed that the extent of fibrosis, serum ferritin, albumin, and age were independent risk factors for the progression of CTD-ILD to PPF (all P<0.05). A prediction model was established based on the results of the multivariate COX regression analysis. The area under the receiver operator characteristic curve at 6 months, 9 months, and 12 months was 0.989, 0.931, and 0.797, respectively, indicating that the model has good discrimination and sensitivity, and good predictive efficacy. The calibration curve showed a good overlap between predicted and actual values. Conclusions The extent of fibrosis, serum ferritin, albumin, and age are independent risk factors for the progression of CTD-ILD to PPF. The model established based on this and externally validated shows good predictive efficacy.

          Release date:2024-06-21 05:13 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品