Objective
To explore the diagnostic and treatment value of computed tomography (CT)-guided embolization coil localization of pulmonary nodules accurately resected under the thoracoscope.
Methods
Between October 2015 and October 2016, 40 patients with undiagnosed nodules of 15 mm or less were randomly divided into a no localization group (n=20, 11 males and 9 females with an average age of 60.50±8.27 years) or preoperative coil localization group (n=20, 12 males and 8 females with an average age of 61.35±8.47 years). Coils were placed with the distal end deep to the nodule and the superficial end coiled on the visceral pleural surface with subsequent visualization by video-assisted thoracoscopic (VATS). Nodules were removed by VATS wedge excision using endo staplers. The tissue was sent for rapid pathological examination, and the pulmonary nodules with definitive pathology found at the first time could be defined as the exact excision.
Results
The age, sex, forced expiratory volume in the first second of expiration, nodule size/depth were similar between two groups. The coil group had a higher rate of accurate resection (100.00% vs. 70.00%, P=0.008), less operation time to nodule excision (35.65±3.38 minvs. 44.38±11.53 min,P=0.003), and reduced stapler firings (3.25±0.85vs. 4.44±1.26,P=0.002) with no difference in total costs.
Conclusion
Preoperative CT-guided coil localization increases the rate of accurate resection.
Objective To analyze the benign-malignant outcomes of pulmonary nodules in surgical patients and their influencing factors, and provide evidence and ideas for optimizing and improving the integrated management model of pulmonary nodules. Methods From October to December 2023, a convenience sampling method was used to select patients who underwent lung surgery at West China Hospital, Sichuan University between July 2022 and June 2023 for this study. The malignancy rate of postoperative pathological results of pulmonary nodules and its influencing factors were analyzed using univariate analysis and multiple logistic regression. Results A total of 4600 surgical patients with pulmonary nodules were included, with a malignancy rate of 88.65% (4078/4600) and a benign rate of 11.35% (522/4600). Univariate analysis showed significant differences in malignancy rates among different genders, ages, methods of pulmonary nodule detection, and smoking histories (P<0.05); however, no significant difference was found regarding place of birth or family history of lung cancer (P>0.05). Multiple logistic regression analysis indicated that females [odds ratio (OR)=1.533, 95% confidence interval (CI) (1.271, 1.850)], older age groups [61-75 vs. ≤30 years: OR=1.640, 95%CI (1.021, 2.634); >75 vs. ≤30 years: OR=2.690, 95%CI (1.062, 6.814)], and pulmonary nodules detected during physical examinations [OR=1.286, 95%CI (1.064, 1.554)] were high-risk factors for malignancy, with statistical significance (P<0.05). Conclusion In the integrated management of pulmonary nodules, it is crucial not to overlook females or older patients, as they may be more significant influencing factors than smoking; furthermore, lung examinations are effective means of early detection of malignant lung tumors and are worth promoting and popularizing.
Accurate segmentation of pulmonary nodules is an important basis for doctors to determine lung cancer. Aiming at the problem of incorrect segmentation of pulmonary nodules, especially the problem that it is difficult to separate adhesive pulmonary nodules connected with chest wall or blood vessels, an improved random walk method is proposed to segment difficult pulmonary nodules accurately in this paper. The innovation of this paper is to introduce geodesic distance to redefine the weights in random walk combining the coordinates of the nodes and seed points in the image with the space distance. The improved algorithm is used to achieve the accurate segmentation of pulmonary nodules. The computed tomography (CT) images of 17 patients with different types of pulmonary nodules were selected for segmentation experiments. The experimental results are compared with the traditional random walk method and those of several literatures. Experiments show that the proposed method has good accuracy in the segmentation of pulmonary nodule, and the accuracy can reach more than 88% with segmentation time is less than 4 seconds. The results could be used to assist doctors in the diagnosis of benign and malignant pulmonary nodules and improve clinical efficiency.
ObjectiveTo explore the safety and feasibility of 3D precise localization based on anatomical markers in the treatment of pulmonary nodules during video-assisted thoracoscopic surgery (VATS).MethodsFrom June 2019 to April 2015, 27 patients with pulmonary nodules underwent VATS in our Hospital were collected in the study, including 3 males and 24 females aged 51.8±13.7 years. The surgical data were retrospectively reviewed and analyzed, such as localization time, localization accuracy rate, pathological results, complication rate and postoperative hospital stay.ResultsA total of 28 pulmonary nodules were localized via this method. All patients received surgery successfully. No mortality or major morbidity occurred. The general mean localization time was 17.6±5.8 min, with an accuracy of 96.4%. The mean diameter of pulmonary nodules was 14.0±8.0 mm with a mean distance from visceral pleura of 6.5±5.4 mm. There was no localization related complication. The mean postoperative hospital stay was 6.7±4.3 d. The routine pathological result showed that 78.6% of the pulmonary nodules were adenocarcinoma.Conclusion3D precise localization based on anatomical markers in the treatment of pulmonary nodules during thoracoscopic surgery is accurate, safe, effective, economical and practical, and it is easy to master with a short learning curve.
ObjectiveTo investigate the feasibility of using magnetic beads to locate small pulmonary nodules.MethodsTwelve rabbits were randomly divided into two groups, 6 in each group. One group underwent thoracotomy after anesthesia and the other group underwent percutaneous puncture under the guidance of X-ray. One and two cylindrical tracer magnets (magnetic beads) with a diameter of 1 mm and a height of 3 mm were injected adjacent to the imaginary pulmonary nodules in left lung in each group. The magnetic beads beside the imaginary nodules were attracted by a pursuit magnet with a diameter of 9 mm and a height of 19 mm. The effectiveness of localization by magnetic beads were determined by attraction between tracer and pursuit magnets.ResultsAll processes were uneven in 12 rabbits. There was micro hemorrhage and no hematoma in the lung tissue at the injection site of the magnetic beads. When tracked with the pursuit magnets, there was one bead divorce in cases that one bead was injected, but no migration or divorce of the magnetic beads in cases that two magnetic beads were simultaneously injected to localize the small pulmonary nodules.ConclusionThe feasibility of using magnetic beads to locate small pulmonary nodules has been preliminarily verified.
ObjectiveTo establish and internally validate a predictive model for poorly differentiated adenocarcinoma based on CT imaging and tumor marker results. MethodsPatients with solid and partially solid lung nodules who underwent lung nodule surgery at the Department of Thoracic Surgery, the Affiliated Brain Hospital of Nanjing Medical University in 2023 were selected and randomly divided into a training set and a validation set at a ratio of 7:3. Patients' CT features, including average density value, maximum diameter, pleural indentation sign, and bronchial inflation sign, as well as patient tumor marker results, were collected. Based on postoperative pathological results, patients were divided into a poorly differentiated adenocarcinoma group and a non-poorly differentiated adenocarcinoma group. Univariate analysis and logistic regression analysis were performed on the training set to establish the predictive model. The receiver operating characteristic (ROC) curve was used to evaluate the model's discriminability, the calibration curve to assess the model's consistency, and the decision curve to evaluate the clinical value of the model, which was then validated in the validation set. ResultsA total of 299 patients were included, with 103 males and 196 females, with a median age of 57.00 (51.00, 67.25) years. There were 211 patients in the training set and 88 patients in the validation set. Multivariate analysis showed that carcinoembryonic antigen (CEA) value [OR=1.476, 95%CI (1.184, 1.983), P=0.002], cytokeratin 19 fragment antigen (CYFRA21-1) value [OR=1.388, 95%CI (1.084, 1.993), P=0.035], maximum tumor diameter [OR=6.233, 95%CI (1.069, 15.415), P=0.017], and average density [OR=1.083, 95%CI (1.020, 1.194), P=0.040] were independent risk factors for solid and partially solid lung nodules as poorly differentiated adenocarcinoma. Based on this, a predictive model was constructed with an area under the ROC curve of 0.896 [95%CI (0.810, 0.982)], a maximum Youden index corresponding cut-off value of 0.103, sensitivity of 0.750, and specificity of 0.936. Using the Bootstrap method for 1000 samplings, the calibration curve predicted probability was consistent with actual risk. Decision curve analysis indicated positive benefits across all prediction probabilities, demonstrating good clinical value. ConclusionFor patients with solid and partially solid lung nodules, preoperative use of CT to measure tumor average density value and maximum diameter, combined with tumor markers CEA and CYFRA21-1 values, can effectively predict whether it is poorly differentiated adenocarcinoma, allowing for early intervention.
ObjectiveTo systematically evaluate the efficacy and safety of traditional Chinese medicine (TCM) compound in treating pulmonary nodules, providing basic evidence-based medical evidence for TCM intervention in pulmonary nodules. MethodsComputer search of PubMed, CNKI, Wanfang, VIP, and SinoMed was conducted to select randomized controlled trials (RCTs) of TCM compound intervention in pulmonary nodules, with the retrieval time from the inception to November 29, 2023. The Cochrane bias risk assessment tool was used to evaluate the quality of the included studies, and Review Manager 5.4 was used for Meta-analysis. ResultsA total of 18 RCTs were included, covering 8 provinces across the country, with a total sample size of 1301 patients. The TCM compounds used in the included studies all incorporated the method of dissolving phlegm and dissipating nodules. There was a high risk of bias uncertainty in the included studies. Meta-analysis results suggested that TCM compound could significantly reduce the diameter of pulmonary nodules [MD=?1.41, 95%CI (?1.70, ?1.13), P<0.001], decrease the number of nodules [MD=?0.37, 95%CI (?0.73, ?0.01), P=0.05], alleviate clinical symptoms [MD=?4.84, 95%CI (?6.04, ?3.64), P<0.001], and improve lung function [forced expiratory volume in one second (FEV1), MD=0.55, 95%CI (0.09, 1.01), P=0.02; FEV1/forced vital capacity, MD=6.12, 95%CI (4.47, 7.78), P<0.001]. However, there was no statistically significant difference in the probability of malignancy between the experimental group and the control group [MD=?0.01, 95%CI (?0.01, 0.00), P=0.09]. ConclusionTCM compound can significantly reduce the diameter of pulmonary nodules, decrease the number of nodules, alleviate clinical symptoms, and improve lung function, but future multicenter, large-sample, high-quality RCTs are still needed to further explore and verify this conclusion.
The possibility of solitary pulmonary nodules tending to lung cancer is very high in the middle and late stage. In order to detect the middle and late solitary pulmonary nodules, we present a new computer-aided diagnosis method based on the geometric features. The new algorithm can overcome the disadvantage of the traditional algorithm which can't eliminate the interference of vascular cross section. The proposed algorithm was implemented by multiple clustering of the extracted geometric features of region of interest (ROI) through K-means algorithm, including degree of slenderness, similar degree of circle, degree of compactness and discrete degree. The 232 lung CT images were selected from Lung Image Database Consortium (LIDC) database to do contrast experiment. Compared with the traditional algorithm, the detection rate of the new algorithm was 92.3%, and the error rate was 14.8%. At the same time, the detection rate of the traditional algorithm was only 83.9%, and the error rate was 78.2%. The results show that the proposed algorithm can mark the solitary pulmonary nodules more accurately and reduce the error rate due to precluding the disturbance of vessel section.
ObjectiveTo explore the clinical application of the comprehensive guidance technologies, such as cone beam computed tomography (CBCT), virtual bronchoscopic navigation (VBN), and superimposed high-frequency jet ventilator for respiratory control in the biopsy of peripheral pulmonary nodules (PPNs). MethodsThe clinical information of 3 patients with PPNs diagnosed by CBCT combined with VBN and superimposed high frequency superposition jet ventilator in Shanghai Changhai Hospital were retrospectively analyzed. Results Clinical data of 3 patients were collected. The average diameter of PPNs was (25.3±0.3) mm with various locations in left and right lung. The first nodule was located in the apex of the left upper lung, and the biopsy was benign without malignant cells. The lesion was not enlarged during the 5-year follow-up. The second one was located in the left lingual lung, and the postoperative pathology was confirmed as mucosa-associated lymphoma. The third one was located in the anterior segment of the right upper lung. After the failure of endobronchial procedure, percutaneous PPNs biopsy under CBCT combined with VBN was performed, and the pathological diagnosis was confirmed as primary lung adenocarcinoma. Postoperative pneumothorax complication occurred in the third patient with right lung compression rate approximately 20%. ConclusionsThe application of CBCT, combined with VBN and the superimposed high frequency jet ventilator for respiratory control can potentially improve the accuracy and safety in the diagnosis of PPNs. Multi-center clinical trials are needed to verify its further clinical application.
The robotic bronchoscopy system is a new technology for lung lesion location, biopsy and interventional therapy. Its safety and effectiveness have been clinically proven. Based on many advanced technologies carried by the robotic bronchoscopy system, it is more intelligent, convenient and stable when clinicians perform bronchoscopy operations. It has higher accuracy and diagnostic rates, and less complications than bronchoscopy with the assistance of magnetic navigation and ordinary bronchoscopy. This article gave a review of the progress of robotic bronchoscopy systems, and a prospect of the combination with artificial intelligence.