1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "scaffold" 141 results
        • REPAIR OF PERIPHERAL NERVE DEFECT BY XENOGENEIC ACELLULAR NERVE BASAL LAMINA SCAFFOLDS

          OBJECTIVE: To explore the possibility to bridge peripheral nerve defects by xenogeneic acellular nerve basal lamina scaffolds. METHODS: Thirty SD rats were randomly divided into 5 groups; in each group, the left sciatic nerves were bridged respectively by predegenerated or fresh xenogeneic acellular nerve basal lamina scaffolds, autogenous nerve grafting, fresh xenogeneic nerve grafting or without bridging. Two kinds of acellular nerve basal lamina scaffolds, extracted by 3% Triton X-100 and 4% deoxycholate sodium from either fresh rabbit tibial nerves or predegenerated ones for 2 weeks, were transplanted to bridge 15 mm rat sciatic nerve gaps. Six months after the grafting, the recovery of function was evaluated by gait analysis, pinch test, morphological and morphometric analysis. RESULTS: The sciatic nerve function indexes (SFI) were -30.7% +/- 6.8% in rats treated with xenogeneic acellular nerve, -36.2% +/- 9.7% with xenogeneic predegenerated acellular nerve, and -33.9% +/- 11.3% with autograft respectively (P gt; 0.05). The number of regenerative myelinated axons, diameter of myelinated fibers and thickness of myelin sheath in acellular xenograft were satisfactory when compared with that in autograft. Regenerated microfascicles distributed in the center of degenerated and acellular nerve group. The regenerated nerve fibers had normal morphological and structural characters under transmission electron microscope. The number and diameter of myelinated fibers in degenerated accellular nerve group was similar to that of autograft group (P gt; 0.05). Whereas the thickness of myelin sheath in degenerated accellular nerve group was significantly less than that of autograft group (P lt; 0.05). CONCLUSION: The above results indicate that xenogeneic acellular nerve basal lamina scaffolds extracted by chemical procedure can be successfully used to repair nerve defects without any immunosuppressants.

          Release date: Export PDF Favorites Scan
        • Research progress of electrospinning used in annulus fibrosus tissue engineering

          Degenerative disc disease is a prevalent chronic disease that orthopaedic surgeons currently face as a difficulty. Tissue engineering represents the most promising possible therapeutic strategy for disc repair and regeneration. Surgery is the primary treatment for degenerative disc disease, but there are still inherent limits in practical practice. Electrospinning technique is a method for manufacturing nanoscale fibers with varied mechanical properties, porosity, and orientation, which can imitate the structural qualities and mechanical properties of natural intervertebral discs. Therefore, electrospinning materials can be utilized for disc regeneration and replacement. This article reviews recent advancements in disc tissue engineering and electrostatically spun nanomaterials typically utilized for the fabrication of disc scaffolds, as well as present and future techniques that may enhance the performance of electrostatically spun fibers.

          Release date:2022-11-24 04:15 Export PDF Favorites Scan
        • PROGRESS OF PERIPHERAL NERVE DEFECT TREATMENT WITH TISSUE ENGINEERING

          Objective To review new progress of related research of peri pheral nerve defect treatment with tissue engineering in recent years. Methods Domestic and internationl l iterature concerning peri pheral nerve defect treatment with tissue engineering was reviewed and analyzed. Results Releasing neurotrophic factors with sustained release technology included molecular biology techniques, poly (lactic-co-glycol ic acid) microspheres, and polyphosphate microspheres. The mixture of neurotrophic factors and ductus was implanted to the neural tube wall which could be degraded then releasing factors slowly. Seed cells which were the major source of active ingredients played an important role in the repair and reconstruction of tissue engineering products. The neural tube of Schwann cells made long nerve repair and the quality of nerve regeneration was improved. Nerve scaffold materials included natural and synthetic biodegradable materials. Tube structure usually was adopted for nerve scaffold, which performance would affect the nerve repair effects directly. Conclusion With the further research of tissue engineering, the treatment of peripheral nerve defects with tissue engineering has made significant progress.

          Release date:2016-09-01 09:04 Export PDF Favorites Scan
        • TENSILE MECHANICAL CHARACTERISTICS OF DECALCIFIED CORTICAL BONE MATRIX

          Objective To evaluate the tensile mechanical characteristics of decalcified cortical bone matrix with different thicknesses so as to provide an experimental basis for the scaffold of tissue engineering. Methods Decalcified cortical bone matrix was prepared from fresh bovine tibia with rapid decalcification techniques. Its physical characteristics including colour, texture, and so on, were observed. Then the decalcified rate was calculated. Decalcified cortical bone matrices were radially cut into sl ices with different thicknesses along longitudinal axis and divided into 4 groups: group A (100- 300 μm), group B (300-500 μm), group C (500-700 μm), and group D (700-1 000 μm). Then the sl ice specimens of each group were characterized with tensile test and histological examination. Results General observation showed that decalcified cortical bone matrix with hydrogen peroxide treatment was ivory white with good elasticity and flexibil ity. The decalcified rate was 97.6%. The tensile strength and elastic modulus of groups B, C, and D were significantly higher than those of roup A (P lt; 0.05); there was no significant difference among groups B, C, and D (P gt; 0.05). The stiffness in 4 groups increased gradually with the increasing thickness, it was significantly lower in group A than those in groups B, C, and D (P lt; 0.05), and in groups B and C than that in group D (P lt; 0.05). While there was no significant difference in ultimate strain within 4 groups (P gt; 0.05). Histologically, intact osteon was observed in every group, with an average maximum diameter of 182 μm (range, 102- 325 μm). Conclusion The mechanical properties of decalcified cortical bone matrix might depend on the integrity of the osteons. Sl ices with thickness of 300 μm or more could maintain similar mechanical properties when decalcified cortical bone matrix is used as a scaffold for tissue engineering.

          Release date:2016-08-31 04:23 Export PDF Favorites Scan
        • RESEARCH ADVANCE OF CORNEAL TISSUE ENGINEERING

          Objective To review research progress of corneal tissueengineering.Methods The recent articles on corneal tissue engineering focus on source and selection of corneal cells, the effects of growth factors on culture of corneal cells in vitro. The preparation and selection of three-dimensional biomaterial scaffolds and their b and weak points were discussed. Results The corneal tissue engineering cells come from normal human corneal cells. The embryo corneal cell was excellent. Several kinds of growth factors play important roles in culture, growth and proliferation of corneal cell, and incroporated into matrix.Growth factors including basic fibroblast growth factor, keratinocyte growth factor, transforming growth factor β1 and epidermal growth factor was favor to corneal cell. Collagen, chitosan and glycosaninoglycans were chosen as biomaterial scaffolds. Conclusion Human tissue engineering cornea can be reconstructed and transplanted. It has good tissue compatibility and can be used as human corneal equivalents.

          Release date: Export PDF Favorites Scan
        • STUDY ON CHITOSAN-GELATIN/HYDROXYAPATITE COMPOSITE SCAFFOLDS--PREPARATION AND MORPHOLOGY

          OBJECTIVE: To prepare chitosan-gelatin/hydroxyapatite (CS-Gel/HA) composite scaffolds, and to investigate the influence of components and preparing conditions to their micromorphology. METHODS: The CS-Gel/HA composite scaffolds were prepared by phase-separation method. Micromorphology and porosity were detected by using scanning electron microscope and liquid displacement method respectively. RESULTS: Porous CS-Gel/HA composite scaffolds could be prepared by phase-separation method, and their density and porosity could be controlled by adjusting components and quenching temperature. CONCLUSION: The study suggests the feasibility of using CS-Gel/HA composite scaffolds for the transplantation of autogenous osteoblasts to regenerate bone tissue.

          Release date:2016-09-01 10:21 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY ON PREPARING CHITOSAN-COLLAGEN MATRIX AND SUBCUTANEOUS IMPLANTATION

          OBJECTIVE: To investigate the feasibility of the chitosan-collagen membrane (CCM) as a dermal substitute. METHODS: Fresh bovine tendo calcaneus collagen was dispersed in 0.5 mol/L acetic acid, co-precipitated with chitosan and lyophilized. Dry membranes were cross-linked in 0.05% glutaraldehyde for 24 hours. In vitro its degrading rate was measured by use of collagenase degrading test. The chitosan-collagen membrane was implanted to subcutaneous dorsal sites of SD rats. After implantation, histocompatibility, vascularity and degradation were observed in vivo. RESULTS: The chitosan-collagen membrane was yellowish, translucent, and porous. Pore size ranged 50-250 microns, and collagen fiber bundles were reticular arrangement in the membrane. It had slower degradation than pure collagen membrane by collagenase in vitro. Subcutaneous implantation test showed the minimal inflammation, good histocompatibility and earlier vascularization. The membrane degradation was slower in vivo. Eight weeks after implantation, organized collagen structure was retained. CONCLUSION: The chitosan-collagen membrane has better physical and biological properties, ideal histocompatibility, earlier vascularization and slower degradation. Therefore, It is an optimum substitute for dermal scaffold.

          Release date:2016-09-01 09:35 Export PDF Favorites Scan
        • BIO-DERIVED BONE TRANSPLANTATION WITH TISUE ENGINEERING TECHNIQUE: PRELIMINARY CLINICAL TRIAL

          OBJECTIVE: To sum up the clinical results of bio-derived bone transplantation in orthopedics with tissue engineering technique. METHODS: From January 2000 to May 2002, 52 cases with various types of bone defect were treated with tissue engineered bone, which was constructed in vitro by allogeneous osteoblasts from periosteum (1 x 10(6)/ml) with bio-derived bone scaffold following 3 to 7 days co-culture. Among them, there were 7 cases of bone cyst, 22 cases of non-union or malunion of old fracture, 15 cases of fresh comminuted fracture of bone defect, 4 cases of spinal fracture and posterior route spinal fusion, 3 cases of bone implant of alveolar bone, 1 case of fusion of tarsotarsal joint. The total weight of tissue engineered bone was 349 g in all the cases, averaged 6.7 g in each case. RESULTS: All the cases were followed up after operation, averaged in 18.5 months. The wound in all the case healed by first intention, but 1 case with second intention. Bone union was completed within 3 to 4.5 months in 50 cases, but 2 cases of delayed union. Six cases were performed analysis of CD3, CD4, CD8, ICAM-1 and VCAM-1 before and after operation, and no obvious abnormities were observed. CONCLUSION: Bio-derived tissue engineered bone has good osteogenesis. No obvious rejection and other complications are observed in the clinical application.

          Release date:2016-09-01 10:14 Export PDF Favorites Scan
        • PREPARATION OF PERSONALIZED BRAIN CAVITY SCAFFOLD WITH THREE-DIMENSIONAL PRINTING TECHNOLOGY BASED ON MAGNETIC RESONANCE IMAGING

          ObjectiveTo explore a method of three-dimensional (3D) printing technology for preparation of personalized rat brain tissue cavity scaffolds so as to lay the foundation for the repair of traumatic brain injury (TBI) with tissue engineered customized cavity scaffolds. MethodsFive male Sprague Dawley rats[weighing (300±10) g] were induced to TBI models by electric controlled cortical impactor. Mimics software was used to reconstruct the surface profile of the damaged cavity based on the MRI data, computer aided design to construct the internal structure. Then collagen-chitosan composite was prepared for 3D bioprinter of bionic brain cavity scaffold. ResultsMRI scans showed the changes of brain tissue injury in the injured side, and the position of the cavity was limited to the right side of the rat brain cortex. The 3D model of personalized cavity containing the internal structure was successfully constructed, and cavity scaffolds were prepared by 3D printing technology. The external contour of cavity scaffolds was similar to that of the injured zone in the rat TBI; the inner positive crossing structure arranged in order, and the pore connectivity was good. ConclusionCombined with 3D reconstruction based on MRI data, the appearance of cavity scaffolds by 3D printing technology is similar to that of injured cavity of rat brain tissue, and internal positive cross structure can simulate the topological structure of the extracellular matrix, and printing materials are collagen-chitosan complexes having good biocompatibility, so it will provide a new method for customized cavity scaffolds to repair brain tissue cavity after TBI.

          Release date:2016-11-14 11:23 Export PDF Favorites Scan
        • Preparation of Elastic Porous Cell Scaffold Fabricated with Combined Polydimethylsiloxane (PDMS) and Hydroxyapatite (HA)

          Polydimethylsiloxane (PDMS) and hydroxyapatite (HA) were combined in our laboratory to fabricate an elastic porous cell scaffold with pore-forming agent, and then the scaffold was used as culture media for rat bone marrow derived mesenchymal stem cells (rBMSCs). Different porous materials (square and circular in shape) were prepared by different pore-forming agents (NaCl or paraffin spheres) with adjustable porosity (62%-76%). The HA crystals grew on the wall of hole when the material was exposed to SBF solutions, showing its biocompatibility and ability to support the cells to attach on the materials.

          Release date: Export PDF Favorites Scan
        15 pages Previous 1 2 3 ... 15 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品