ObjectiveTo analyze the progress in biological tissue engineering scaffold materials and the clinical application, as well as product development status.
MethodsBased on extensive investigation in the status of research and application of biological tissue engineering scaffold materials, a comprehensive analysis was made. Meanwhile, a detailed analysis of research and product development was presented.
ResultsConsiderable progress has been achieved in research, products transformation, clinical application, and supervision of biological scaffold for tissue engineering. New directions, new technology, and new products are constantly emerging. With the continuous progress of science and technology and continuous improvement of life sciences theory, the new direction and new focus still need to be continuously adjusted in order to meet the clinical needs.
ConclusionFrom the aspect of industrial transformation feasibility, acellular scaffolds and extracellular matrix are the most promising new growth of both research and product development in this field.
ObjectiveTo manufacture a polycaprolactone (PCL)/type Ⅰ collagen (COL Ⅰ) tissue engineered meniscus scaffold (hereinafter referred to as PCL/COL Ⅰ meniscus scaffold) by three-dimensional (3D) printing with low temperature deposition technique and to study its physicochemical properties.MethodsFirst, the 15% PCL/4% COLⅠ composite solution and 15% PCL simple solution were prepared. Then, 15% PCL/4% COL Ⅰmeniscus scaffold and 15% PCL meniscal scaffold were prepared by using 3D printing with low temperature deposition techniques. The morphology and microstructure of the scaffolds were observed by gross observation and scanning electron microscope. The compression modulus and tensile modulus of the scaffolds were measured by biomechanical test. The components of the scaffolds were analyzed by Fourier transform infrared spectroscopy (FTIR). The contact angle of the scaffold surface was measured. The meniscus cells of rabbits were cultured with the two scaffold extracts and scaffolds, respectively. After cultured, the cell proliferations were detected by cell counting kit 8 (CCK-8), and the normal cultured cells were used as controls. Cell adhesion and growth of scaffold-cell complex were observed by scanning electron microscope.ResultsAccording to the gross and scanning electron microscope observations, two scaffolds had orientated 3D microstructures and pores, but the surface of the PCL/COLⅠ meniscus scaffold was rougher than the PCL meniscus scaffold. Biomechanical analysis showed that the tensile modulus and compression modulus of the PCL/COL Ⅰ meniscus scaffold were not significantly different from those of the PCL meniscus scaffold (P>0.05). FTIR analysis results showed that COL Ⅰ and PCL were successful mixed in PCL/ COL Ⅰ meniscus scaffolds. The contact angle of PCL/COLⅠ meniscus scaffold [(83.19±7.49)°] was significantly lower than that of PCL meniscus scaffold [(111.13±5.70)°] (t=6.638, P=0.000). The results of the CCK-8 assay indicated that with time, the number of cells cultured in two scaffold extracts showed an increasing trend, and there was no significant difference when compared with the control group (P>0.05). Scanning electron microscope observation showed that the cells attached on the PCL/ COL Ⅰ meniscus scaffold more than that on the PCL scaffold.ConclusionPCL/COLⅠmeniscus scaffolds are prepared by 3D printing with low temperature deposition technique, which has excellent physicochemical properties without cytotoxicity. PCL/COLⅠmeniscus scaffold is expected to be used as the material for meniscus tissue engineering.
Objective To manufacture a poly (lactic-co-glycolic acid) (PLGA) scaffold by low temperature deposition three-dimensional (3D) printing technology, prepare a PLGA/decellularized articular cartilage extracellular matrix (DACECM) cartilage tissue engineered scaffold by combining DACECM, and further investigate its physicochemical properties. Methods PLGA scaffolds were prepared by low temperature deposition 3D printing technology, and DACECM suspensions was prepared by modified physical and chemical decellularization methods. DACECM oriented scaffolds were prepared by using freeze-drying and physicochemical cross-linking techniques. PLGA/DACECM oriented scaffolds were prepared by combining DACECM slurry with PLGA scaffolds. The macroscopic and microscopic structures of the three kinds of scaffolds were observed by general observation and scanning electron microscope. The chemical composition of DACECM oriented scaffold was analyzed by histological and immunohistochemical stainings. The compression modulus of the three kinds of scaffolds were measured by biomechanical test. Three kinds of scaffolds were embedded subcutaneously in Sprague Dawley rats, and HE staining was used to observe immune response. The chondrocytes of New Zealand white rabbits were isolated and cultured, and the three kinds of cell-scaffold complexes were prepared. The growth adhesion of the cells on the scaffolds was observed by scanning electron microscope. Three kinds of scaffold extracts were cultured with L-929 cells, the cells were cultured in DMEM culture medium as control group, and cell counting kit 8 (CCK-8) was used to detect cell proliferation. Results General observation and scanning electron microscope showed that the PLGA scaffold had a smooth surface and large pores; the surface of the DACECM oriented scaffold was rough, which was a 3D structure with loose pores and interconnected; and the PLGA/DACECM oriented scaffold had a rough surface, and the large hole and the small hole were connected to each other to construct a vertical 3D structure. Histological and immunohistochemical qualitative analysis demonstrated that DACECM was completely decellularized, retaining the glycosaminoglycans and collagen typeⅡ. Biomechanical examination showed that the compression modulus of DACECM oriented scaffold was significantly lower than those of the other two scaffolds (P<0.05). There was no significant difference between PLGA scaffold and PLGA/DACECM oriented scaffold (P>0.05). Subcutaneously embedded HE staining of the three scaffolds showed that the immunological rejections of DACECM and PLGA/DACECM oriented scaffolds were significantly weaker than that of the PLGA scaffold. Scanning electron microscope observation of the cell-scaffold complex showed that chondrocytes did not obviously adhere to PLGA scaffold, and a large number of chondrocytes adhered and grew on PLGA/DACECM oriented scaffold and DACECM oriented scaffold. CCK-8 assay showed that with the extension of culture time, the number of cells cultured in the three kinds of scaffold extracts and the control group increased. There was no significant difference in the absorbance (A) value between the groups at each time point (P>0.05). Conclusion The PLGA/DACECM oriented scaffolds have no cytotoxicity, have excellent physicochemical properties, and may become a promising scaffold material of tissue engineered cartilage.
ObjectiveTo observe the feasibility of acellular cartilage extracellular matrix (ACECM) oriented scaffold combined with chondrocytes to construct tissue engineered cartilage.MethodsChondrocytes from the healthy articular cartilage tissue of pig were isolated, cultured, and passaged. The 3rd passage chondrocytes were labeled by PKH26. After MTT demonstrated that PKH26 had no influence on the biological activity of chondrocytes, labeled and unlabeled chondrocytes were seeded on ACECM oriented scaffold and cultivated. The adhesion, growth, and distribution were evaluated by gross observation, inverted microscope, and fluorescence microscope. Scanning electron microscope was used to observe the cellular morphology after cultivation for 3 days. Type Ⅱ collagen immunofluorescent staining was used to check the secretion of extracellular matrix. In addition, the complex of labeled chondrocytes and ACECM oriented scaffold (cell-scaffold complex) was transplanted into the subcutaneous tissue of nude mouse. After transplantation, general physical conditions of nude mouse were observed, and the growth of cell-scaffold complex was observed by molecular fluorescent living imaging system. After 4 weeks, the neotissue was harvested to analyze the properties of articular cartilage tissue by gross morphology and histological staining (Safranin O staining, toluidine blue staining, and typeⅡcollagen immunohistochemical staining).ResultsAfter chondrocytes that were mainly polygon and cobblestone like shape were seeded and cultured on ACECM oriented scaffold for 7 days, the neotissue was translucency and tenacious and cells grew along the oriented scaffold well by inverted microscope and fluorescence microscope. In the subcutaneous microenvironment, the cell-scaffold complex was cartilage-like tissue and abundant cartilage extracellular matrix (typeⅡcollagen) was observed by histological staining and typeⅡcollagen immunohistochemical staining.ConclusionACECM oriented scaffold is benefit to the cell adhesion, proliferation, and oriented growth and successfully constructes the tissue engineered cartilage in nude mouse model, which demonstrates that the ACECM oriented scaffold is promise to be applied in cartilage tissue engineering.
Objective To investigate the biocompatibility of p(3HB-co-3HH) and marrow mesenchymal stell cells (MSCs).Methods MSCs were inoculated to p(3HB-co-3HH), and then cultured for 2-4 weeks in vitro and embedded for 2 weeks in vivo. The growth, proliferation, morphology and phenotype properties of MSCs were observed by use of phase contrast microscope, electron microscope, HE staining and staining of type Ⅰ collagen. Results p(3HB-co-3HH) hadgood compatibility. The inoculated MSCs could be well-distributed, attached well and obtain the phenotype of MSCs in p(3HB-co-3HH). After osteogenic inducer were added, MSCs differentiated to osteoblasts and secreted matrix. Type Ⅰ collagen was stained positively by immunohistochemical techenique. Conclusion The above results demonstrate that there is satisfactory biocompatibility betweenp(3HB-co-3HH) and MSCs.
ObjectiveTo investigate the effect of repairing radial bone defect with scaffold material of attapulgite/collagen type I/poly (caprolactone) (ATP/Col I/PCL) in rabbits and the possibility as bone graft substitutes.
MethodsATP/Col I/PCL materials were prepared via adding ATP to hexafluoroisopropanol after dissolved Col I/PCL (3∶2), and Col I/PCL materials via dissolving Col I/PCL (3∶2) in hexafluoroisopropanol served as control. The structure of scaffolds was observed under scanning electron microscope (SEM). Twenty-four Japanese white rabbits (male, 2 months old) were used to establish the bilateral radius defect model of 15 mm in length, and randomly divided into group A (6 rabbits, 12 defects), group B (9 rabbits, 18 defects), and group C (9 rabbits, 18 defects); then the Col I/PCL scaffold was implanted in the bone defect area in group B, the ATP/Col I/PCL scaffold in group C, no treatment was done in group A as control. The general condition of rabbits was observed after operation, and bone defect repair was evaluated by X-ray at 4, 8, and 12 weeks. At 12 weeks, the tissue of defect area was harvested for the general, SEM, Micro-CT, histological, and immunohistochemical staining to observe defect repair and material degradation.
ResultsSEM observation showed that two kinds of materials were porous structure, ATP/Col I/PCL structure was more dense than Col I/PCL. All animals survived to the end of experiment, and no incision infection occurred during repair process.X-ray films showed that the bone marrow cavity was re-opened in defect area of group C with time, the repair effect was superior to that of groups A and B. At 12 weeks after operation, general observation showed that scaffold material had good fusion with the surrounding tissue in groups B and C, defect was filled with connective tissue in group A. SEM indicated that the surface and pore of the scaffold were covered with a large number of cells and tissues in groups B and C. Micro-CT demonstrated that the new bone volume, bone mineral content, tissue mineral content, and connectivity density of group C were significantly higher than those of groups A and B (P<0.05). The observation of histology and immunohistochemical staining indicated that there were lots of connective tissues in defect area of group A, and ALP, Col I, and OPN were weakly expressed; there were many collagen fibers in scaffold degradation area in group B, and the expression levels of ALP, Col I, and OPN were higher than those of group A; there was few new bone in group C, the degradation rate of the scaffold was slower than that of group B, and the expression of Col I and OPN were enhanced, while ALP was weakened when compared with groups A and B.
ConclusionATP/Col I/PCL composite scaffold material can degrade in vivo, and has dense three-dimensional porous structure, good biocompatibility, and high potentiality of bone repair, so it can be used as bone substitute material.
OBJECTIVE: To sum up the clinical results of bio-derived bone transplantation in orthopedics with tissue engineering technique. METHODS: From January 2000 to May 2002, 52 cases with various types of bone defect were treated with tissue engineered bone, which was constructed in vitro by allogeneous osteoblasts from periosteum (1 x 10(6)/ml) with bio-derived bone scaffold following 3 to 7 days co-culture. Among them, there were 7 cases of bone cyst, 22 cases of non-union or malunion of old fracture, 15 cases of fresh comminuted fracture of bone defect, 4 cases of spinal fracture and posterior route spinal fusion, 3 cases of bone implant of alveolar bone, 1 case of fusion of tarsotarsal joint. The total weight of tissue engineered bone was 349 g in all the cases, averaged 6.7 g in each case. RESULTS: All the cases were followed up after operation, averaged in 18.5 months. The wound in all the case healed by first intention, but 1 case with second intention. Bone union was completed within 3 to 4.5 months in 50 cases, but 2 cases of delayed union. Six cases were performed analysis of CD3, CD4, CD8, ICAM-1 and VCAM-1 before and after operation, and no obvious abnormities were observed. CONCLUSION: Bio-derived tissue engineered bone has good osteogenesis. No obvious rejection and other complications are observed in the clinical application.
The establishing of myocardial tissue engineering techniques not only solve a series of issues that generate in cell and tissue transplantation after myocardial infarction, but also create a platform for selecting better materials and transplantation techniques. However, both experimental animal studies and recent clinical trials indicate that current transplantation techniques still have many defects, mainly including lack of suitable seed cells, low survival rate and low differentiation rate after transplantation. In this context, extracellular matrix (ECM), as myocardial tissue engineering scaffold materials, has gained increasing attention and become a frontier and focus of medical research in recent years. ECM is no longer merely regarded as a scaffold or a tissue, but plays an important role in providing essential signals to influence major intracellular pathways such as cell proliferation, differentiation and metabolism. The involved models of ECM can be classified into following types:natural biological scaffold materials, synthetic polymer scaffold materials and composite scaffold materials with more balanced physical and biological properties. This review mainly introduces research progress of ECM in myocardial tissue engineering and ECM materials.
In sports system, the tendon-bone interface has the effect of tensile and bearing load, so the effect of healing plays a crucial role in restoring joint function. The process of repair is the formation of scar tissue, so it is difficult to achieve the ideal effect for morphology and biomechanical strength. The tissue engineering method can promote the tendon-bone interface healing from the seed cells, growth factors, and scaffolds, and is a new direction in the field of development of the tendon-bone interface healing.
To summarize the medium-term cl inical result of bio-derived bone transplantation in orthopedics with tissue engineering technique. Methods From December 2000 to June 2001, 10 cases of various types of bone defect were treated with tissue engineered bone, which was constructed in vitro by allogenous osteoblasts from periosteum (1 × 106/ mL) with bio-derived bone scaffold following 3 to 7 days co-culture. Six men and 4 women were involved in this study, aged from 14 to 70 years with a median of 42 years. Among them, there were 2 cases of bone cyst, 1 case of non-union of old fracture, 6 cases of fresh comminuted fracture with bone defect, and 1 case of chronic suppurative ostemyel itis. The total weight of tissue engineered bone was 3-15 g in all the cases, averaged 7.3 g in each case. Results The wound in all the case healed by first intention. For 7 year follow up, bone union was completed within 3.0 to 4.5 months in 9 cases, but loosening occurred and the graft was taken out 1 year after operation in 1 case. The X-ray films showed that 9 cases achieved union except one who received resection of the head of humerus. No obvious abnormities were observed, and the function of affected l imbs met daily l ife and work. Conclusion Bio-derived tissue engineered bone has good osteogenesis. No obvious rejection and other compl ications are observed in the cl inical appl ication.