1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "stacked deep polynomial network" 1 results
        • Computer-aided diagnosis of Parkinson's disease based on the stacked deep polynomial networks ensemble learning framework

          Feature representation is the crucial factor for the magnetic resonance imaging (MRI) based computer-aided diagnosis (CAD) of Parkinson’s disease (PD). Deep polynomial network (DPN) is a novel supervised deep learning algorithm, which has excellent feature representation for small dataset. In this work, a stacked DPN (SDPN) based ensemble learning framework is proposed for diagnosis of PD, which can improve diagnostic accuracy for small dataset. In the proposed framework, SDPN was performed on each subset of extracted features from MRI images to generate new feature representation. The support vector machine (SVM) was then adopted to perform classification task on each subset. The ensemble learning algorithm was then performed on all the SVM classifiers to generate the final diagnosis for PD. The experimental results on the Parkinson’s Progression Markers Initiative dataset (PPMI) showed that the proposed algorithm achieved the classification accuracy, sensitivity and specificity of 90.15%, 85.48% and 93.27%, respectively, with the brain network features, and it also got the classification accuracy of 87.18%, sensitivity of 86.90% and specificity of 87.27% on the multi-view features extracted from different brain regions. Moreover, the proposed algorithm outperformed other algorithms on the MRI dataset from PPMI. It suggests that the proposed SDPN-based ensemble learning framework has the feasibility and effectiveness for the CAD of PD.

          Release date:2019-02-18 02:31 Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品