OBJECTIVE: To investigate the selection and identification of human keratinocyte stem cells(KSC) in vitro. METHODS: According to the characteristics of KSC which can adhere to extracellular matrix very fast, we selected 3 groups of different time(5 minutes, 20 minutes and 60 minutes) and unselected as control group. And the cells were identified by monoclone antibody of beta 1-integrin and cytokeratin 19 (Ck19), then the image analysis was done. Furthermore we analyzed the cultured cells with flow cytometer(FCM) and observed the ultrastructure of the cell by transmission electron microscope(TEM). RESULTS: The cell clones formed in all groups after 10 to 14 days, while the cells of 5 minute group grew more slowly than those of the other groups, however, the clones of this group were bigger. The expression of beta 1-integrin and Ck19 were found in all groups. The positive rate of beta 1-integrin was significant difference between 5 minute group and the other groups (P lt; 0.05). And the expression of Ck19 was no significant difference between 5 minute group and 20 minute group(P gt; 0.05), and between 60 minute group and control group. But significant difference was observed between the former and the later groups(P lt; 0.05). The result of FCM showed that most cells of the 5 minute group lied in G1 period of cell cycle, which was different from those of the other groups. At the same time, the cells of 5 minute group were smaller and contained fewer organelles than those of the other groups. CONCLUSION: The above results demonstrate that the cells of 5 minute group have a slow cell cycle, characteristics of immaturity, and behaving like clonogenic cells in vitro. The cells have the general anticipated properties for KSC. So the KSC can be selected by rapid attachment to extracellular matrix and identified by monoclone antibody of beta 1-integrin and Ck19.
【Abstract】 Objective Sonic hedgehog (Shh) signaling pathway is involved in an important part of regulating angiogenesis. To investigate the effects of recombinant Shh N-terminant (rShh-N) on the expression and secretion of angiogenesis-related factor—vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Methods Bone marrow mesenchymal stem scells (BMSCs) were isolated from 3-day-old healthy Sprague Dawley rats and cultured to passage 3 in vitro. rShh-N at the concentrations of 0, 10, 100, and 200 ng/mL were applied to culture BMSCs in groups A, B, C, and D, respectively. At 12, 24, 48, and 72 hours of culture, the expressions of VEGF and bFGF mRNA and the levels of VEGF and bFGF in supernatant were measured with real-time quantitative PCR and ELISA, respectively. Results At the gene level, compared with group A, the expressions of VEGF and bFGF mRNA were enhanced in group D (P lt; 0.05) and the upregulation was more significant at 12 and 48 hours than 24 and 72 hours (P lt; 0.01). In group C, bFGF mRNA expression was substantially promoted at 12-72 hours (P lt; 0.05) and VEGF mRNA level was upregulated at 24-72 hours (P lt; 0.05), and both reached peak at 72 hours (P lt; 0.01). In group B, VEGF mRNA expression was inhibited at 12 hours (P lt; 0.05), but the level increased at 48 and 72 hours (P lt; 0.05); bFGF mRNA expression was obviously promoted at 12-48 hours (P lt; 0.05) and the maximum appeared at 48 hours (P lt; 0.01). At the protein level, the secretion of VEGF and bFGF in group D was significantly increased at 12-72 hours, as compared with group A (P lt; 0.05). In group C, VEGF and bFGF secretion was increased at 24-72 hours (P lt; 0.05). The secretion of VEGF in group B was inhibited at 12 and 48 hours (P lt; 0.05) and was promoted at 24 hours (P lt; 0.05); bFGF secretion was up-regulated at 24 and 48 hours (P lt; 0.05). The secretion of VEGF and bFGF in supernatant at 【Abstract】 Objective Sonic hedgehog (Shh) signaling pathway is involved in an important part of regulating angiogenesis. To investigate the effects of recombinant Shh N-terminant (rShh-N) on the expression and secretion of angiogenesis-related factor—vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Methods Bone marrow mesenchymal stem scells (BMSCs) were isolated from 3-day-old healthy Sprague Dawley rats and cultured to passage 3 in vitro. rShh-N at the concentrations of 0, 10, 100, and 200 ng/mL were applied to culture BMSCs in groups A, B, C, and D, respectively. At 12, 24, 48, and 72 hours of culture, the expressions of VEGF and bFGF mRNA and the levels of VEGF and bFGF in supernatant were measured with real-time quantitative PCR and ELISA, respectively. Results At the gene level, compared with group A, the expressions of VEGF and bFGF mRNA were enhanced in group D (P lt; 0.05) and the upregulation was more significant at 12 and 48 hours than 24 and 72 hours (P lt; 0.01). In group C, bFGF mRNA expression was substantially promoted at 12-72 hours (P lt; 0.05) and VEGF mRNA level was upregulated at 24-72 hours (P lt; 0.05), and both reached peak at 72 hours (P lt; 0.01). In group B, VEGF mRNA expression was inhibited at 12 hours (P lt; 0.05), but the level increased at 48 and 72 hours (P lt; 0.05); bFGF mRNA expression was obviously promoted at 12-48 hours (P lt; 0.05) and the maximum appeared at 48 hours (P lt; 0.01). At the protein level, the secretion of VEGF and bFGF in group D was significantly increased at 12-72 hours, as compared with group A (P lt; 0.05). In group C, VEGF and bFGF secretion was increased at 24-72 hours (P lt; 0.05). The secretion of VEGF in group B was inhibited at 12 and 48 hours (P lt; 0.05) and was promoted at 24 hours (P lt; 0.05); bFGF secretion was up-regulated at 24 and 48 hours (P lt; 0.05). The secretion of VEGF and bFGF in supernatant at
Objective To analyze the advances of cancer stem cell (CSC) in recent years, and to propose a prospect for CSC research and cancer therapy. Methods Articles about important advances of CSC theory and cancer therapy were reviewed, and then selected and summarized. Results In 2001, CSC was first put forward as a concept, till now, which has been confirmed in many tissues. In recent years, efforts were dedicated to such topics including: identification of CSC in sol id tumors, the origin of CSC, its niche and growth mechanism, cancer therapy, etc. According to the CSC theory, traditional therapeutic methods have deficiencies, and new treatment targeting CSC may thoroughly el iminate tumors. Conclusion At present, CSC theory is still controversial, while it proposed revolutionary methods and directions for the therapy of cancer.
Objective
The aim is to sort CD90+ subpopulation cells in human liver cancer cell lines and investigate efficiency of magnetic cell sorting (MACS) on sorting the liver cancer stem cells.
Methods
①Expressions of CD90. Immunohistochemical method was used to determine the expressions of CD90 in normal liver tissues in 8 cases, liver cancer and adjacent liver cancer tissues in 58 cases. ②Screened the cell lines. Huh-7, MHCC97-H, Bel-7402, and SMMC-7721 cell lines were divided into blank control group and experimental group (5.5×105 cells per hole, 1 hole), cells of the experimental group were added with 5 μL CD90–PE while cells of the blank control group were treated with 5 μL CD90–PE non fluorescent antibody. Determined the proportion of CD90+ cells in the 2 groups by flow cytometry (FCM). ③MACS. Huh-7 and MHCC97-H cell lines were labeled with magnetic beads respectively and sorted by MACS, 1 mL cell suspensionsorted by magnetic sorting (MS) was collected as CD90– group, and 1 mL PBS after MS wash was collected as CD90+ group, as well as blank control group and experimental group. Determined the proportion of CD90+ cells in 4 groups by FCM. Two times of MACS were performed in Huh-7 cells. ④Serum free culture and serum culture. Huh-7 cells were divided into serum-free culture group and serum culture group (1 hole), and proportions of CD90+ cells were determined by FCM at 1 week after culture.
Results
①The positive rate of CD90 was 0 (0/8), 65.5% (38/58), and 20.7% (12/58) in normal liver tissues, liver cancer tissues, and adjacent liver cancer tissues respectively, and the positive rate of CD90 was higher in liver cancer tissues than those of normal liver tissues (χ2=6.78, P<0.05) and adjacent liver cancer tissues (χ2=20.83, P<0.05). ②For Huh-7, MHCC97-H, SMMC-7721, and Bel7402 cell lines, the proportions of CD90+ cells in the experimental group was 0.851%, 1.090%, 2.710%, and 4.050% respectively, the proportions of CD90+ cells in the blank control group was 0.241%, 0.688%, 1.890%, and 2.080% respectively, so we chose Huh-7 and MHCC97-H cell lines to perform MACS. ③Results of MACS for Huh-7 cell line. For the first MACS, the proportions of CD90+ cells in the blank control group, experimental group, CD90– group, and CD90+ group was 0.241%, 0.851%, 0.574%, and 1.100% respectively. For the second MACS, the proportions of CD90+ cells in the blank control group, experimental group, CD90– group, and CD90+ group was 0.032%, 0.961%, 0.426%, and 9.700% respectively.
Conclusions
The normal liver tissues do not express the CD90, but the liver cancer tissues express CD90 highly. There is a few CD90+ cells in Huh-7 and MHCC97-H liver cancer cell lines. The MACS has a certain effect on improving the proportion of CD90+ cells in the cell lines. The serum-free suspension culture has no effect on enriching CD90+ cells.
Spinal cord injury (SCI) is a complex pathological process. Based on the encouraging results of preclinical experiments, some stem cell therapies have been translated into clinical practice. Mesenchymal stem cells (MSCs) have become one of the most important seed cells in the treatment of SCI due to their abundant sources, strong proliferation ability and low immunogenicity. However, the survival rate of MSCs transplanted to spinal cord injury is rather low, which hinders its further clinical application. In recent years, hydrogel materials have been widely used in tissue engineering because of their good biocompatibility and biodegradability. The treatment strategy of hydrogel combined with MSCs has made some progress in SCI repair. This review discusses the significance and the existing problems of MSCs in the repair of SCI. It also describes the research progress of hydrogel combined with MSCs in repairing SCI, and prospects its application in clinical research, aiming at providing reference and new ideas for future SCI treatment.
ObjectiveTo investigate the multi-directional differentiation potential and other biological characteristics of chicken umbilical cord mesenchymal stem cells (UMSC), as well as their reparative effects on bleomycin (BLM)-induced lung injury in mice. MethodsAn acute lung injury model in mice was established by injecting BLM into the bronchus. UMSC were then transplanted via the tail vein. The reparative effects of UMSC on lung injury were evaluated through pathological section observation, survival and differentiation of transplanted cells in mice, and detection of hydroxyproline (HYP) content, among other indicators. ResultsThe UMSC successfully isolated in this study positively expressed specific surface markers CD29, CD44, CD90, and CD166, while the expression of CD34 and CD45 was negative. Induced UMSC could differentiate into adipocytes, osteocytes, chondrocytes, and alveolar epithelial cells. Animal experiments revealed that BLM-treated mice exhibited damaged alveolar structures, significant inflammatory cell infiltration, abnormal collagen deposition, and pulmonary fibrosis. However, after UMSC transplantation, the extent and severity of lung damage were reduced, and the HYP content in lung tissue decreased but remained higher than that of the control group. ConclusionUMSC can continuously proliferate and maintain their biological characteristics under in vitro culture conditions. They possess the ability to migrate to damaged sites and undergo directional differentiation, demonstrating a certain reparative effect on BLM-induced acute lung injury in mice.
ObjectiveTo investigate the effect of transforming growth factorβ1 (TGF-β1) and basic fibroblast growth factor 1 (bFGF-1) on the cellular activities, prol iferation, and expressions of ligament-specific mRNA and proteins in bone marrow mesenchymal stem cells (BMSCs) and ligament fibroblasts (LFs) after directly co-cultured.
MethodsBMSCs from 3-month-old Sprague Dawley rats were isolated and cultured using intensity gradient centrifugation. LFs were isolated using collagenase. The cells at passage 3 were divided into 6 groups: non-induced BMSCs group (group A), non-induced LFs group (group B), non-induced co-cultured BMSCs and LFs group (group C), induced BMSCs group (group D), induced LFs group (group E), and induced co-cultured BMSCs and LFs group (group F). The cellular activities and prol iferation were examined by inverted contrast microscope and MTT; the concentrations of collagen type Ⅰ and type Ⅲ were determined by ELISA; and mRNA expressions of collagen types I andⅢ, fibronectin, tenascin C, and matrix metalloproteinase 2 (MMP-2) were measured by real-time fluorescent quantitative PCR.
ResultsA single cell layer formed in the co-cultured cells under inverted contrast microscope. Group F had fastest cell fusion ( > 90%). The MTT result indicated that group F showed the highest absorbance (A) value, followed by group D, and group B showed the lowest A value at 9 days after culture, showing significant difference (P < 0.05). Moreover, the result of ELISA showed that group F had the highest concentration of collagen type Ⅰ and type Ⅲ (P < 0.05); the concentration of collagen type Ⅲ in group E was significantly higher than that in group D (P < 0.05), but no significant difference was found in the concentration of collagen type Ⅰ between 2 groups (P > 0.05). The ratios of collagen type Ⅰ to type Ⅲ were 1.17, 1.19, 1.10, 1.25, 1.17, and 1.18 in groups A-F; group D was higher than the other groups. The real-time fluorescent quantitative PCR results revealed that the mRNA expressions of collagen type Ⅰ and type Ⅲ and fibronectin were highest in group F; the expression of tenascin C was highest in group D; the expression of MMP-2 was highest in group E; and all differencs were significant (P < 0.05).
ConclusionDirectly co-cultured BMSCs and LFs induced by TGF-β1 and bFGF-1 have higher cellular activities, proliferation, and expressions of ligament-specific mRNA and protein, which can be used as a potential source for ligament tissue engineering.
Objective To establish a better method of isolating andculturing ofneural stem cells(NSCs) in neonatal rat brain. Methods Tissue of brain was isolated from neonatal rats. Different medium and culture concentration were used toculture NSCs of neonatal rat. The culture concentration used were 1×10 4, 1×105, 1×106and 1×107/ml respectively. Ingredient of medium was classified into group 1 to 8 respectively according to whether to add 2% B27, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) as well as the difference in culture concentration. The cells were induced to differentiate asto be confirmed as NSCs, and then were checked by phase contrast microscopy and identified by immunocytochemistry. Results The cells isolated and cultured gathered into neurospheres. The cells were capable of proliferating and maintaining longterm survival in vitro. The cells could be differentiated into neurons and glia.It was to the benefit of the survival of NSCs to add 5% fetal bovine serum(FBS)into the medium at the beginning of the culturing. When 10% FBS was added intothe medium, the neurospheres differentiated quickly. When concentration 1×106/ ml was used, the growth rate of the cells was the highest of all the concentrations. Reasonably higher cell concentration promoted the proliferation of NSCs. It was necessary to add 2% B27, EGF, and bFGF into the medium. The cells had the best growth when 2% B27, 20 ng/ml bFGF and 20 ng/ml EGF were added into the culture medium. EGF and bFGF had cooperative effect. Conclusion A better method of isolating and culturing of NSCs in neonatal rat brain is established and the foundation for future research is laid.
Objective To establish a model of the human marrow mesenchymal stem cells (hMSCs) cultured under the hypoxic condition in adults and to investigate the biological features of MSCs under hypoxia.Methods The bone marrow was obtained by aspiration at the posterior superior iliac spine in 3 healthy adult subjects. hMSCs were isolated by the gradient centrifugation and were cultured in the DMEM-LG that contained 20% fetal bovine serum. The serial subcultivation was performed 10-14 days later. The second passage of the hMSCs were taken, and they were divided into the following 4 groups according to the oxygen concentrations and the medium types: the normoxic group(20%O2, DMEM-LG, Group A), the hypoxic group(1%O2, DMEM-LG,Group B), the normoxic osteoblast induction group(20%O2, conditioned medium, Group C), and the hypoxic osteoblast induction group(1%O2, conditioned medium, Group D). The biological features of the cultured hMSCs under hypoxia were assessed bythe cell count, the MTT method, the colony forming unit-fibroblast, the real-time RT-PCR, and the alkaline phosphatase (ALP) activity, and the alizarinred staining. Results The hMSCs cultured in the Group B and Group D had a significantly higher proliferation rate than those in the Group A (Plt;0.01), and the culture effect was not influenced by the medium type. The hMSCs in the Group B had a significantly higher level of the colony-forming unit capability than the hMSCs cultured in the Group A(Plt;0.01). After the induction, hMSCs in the Group B had a decreasednumber of the osteoblasts than hMSCs in the Group C. The hMSCs in the Group D had a gradually-increasedactivity of ALP, which was significantly lower than that in the Group C(Plt;0.01). The RT-PCR examination revealed that ALP,osteocalcin, and mRNA expressions of collagen type Ⅰ and osteonectin in the Group Csignificantly increased (P<0.01). By comparisonamong the 3 groups, after the 4-week culture the obvious calcium salt deposit and the red-stained calcium nodus could be observed.ConclusionHypoxia can promote the proliferation rate of hMSCs, enhance the colonyforming ability and inhibit the differentiation of the osteoblasts.
ObjectiveTo research the effect of recombinant adenovirus-bone morphogenetic protein 12 (Ad-BMP-12) transfection on the differentiation of peripheral blood mesenchymal stem cells (MSCs) into tendon/ligament cells.
MethodsPeripheral blood MSCs were isolated from New Zealand rabbits (3-4 months old) and cultured in vitro until passage 3. The recombinant adenoviral vector system was prepared using AdEasy system, then transfected into MSCs at passage 3 (transfected group); untransfected MSCs served as control (untransfected group). The morphological characteristics and growth of transfected cells were observed under inverted phase contrast microscope. The transfection efficiency and green fluorescent protein (GFP) expression were detected by flow cytometry (FCM) and fluorescence microscopy. After cultured for 14 days in vitro, the expressions of tendon/ligament-specific markers were determined by immunohistochemistry and real-time fluorescent quantitative PCR.
ResultsGFP expression could be observed in peripheral blood MSCs at 8 hours after transfection. At 24 hours after transfection, the cells had clear morphology and grew slowly under inverted phase contrast microscope and almost all expressed GFP at the same field under fluorescence microscopy. FCM analysis showed that the transfection efficiency of the transfected group was 99.57%, while it was 2.46% in the untransfected group. The immunohistochemistry showed that the expression of collagen type Ι gradually increased with culture time in vitro. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of the tendon/ligament-specific genes (Tenomodulin, Tenascin-C, and Decorin) in the transfected group were significantly higher than those in untransfected group (0.061±0.013 vs. 0.004±0.002, t=-7.700, P=0.031; 0.029±0.008 vs. 0.003±0.001, t=-5.741, P=0.020; 0.679±0.067 vs. 0.142±0.024, t=-12.998, P=0.000).
ConclusionAd-BMP-12 can significantly promote differentiation of peripheral blood MSCs into tendon/ligament fibroblasts and enhance the expressions of tendon/ligament-specific phenotypic differentiation, which would provide the evidence for peripheral blood MSCs applied for tendon/ligament regeneration.