At present the prediction method of epilepsy patients is very time-consuming and vulnerable to subjective factors, so this paper presented an automatic recognition method of epilepsy electroencephalogram (EEG) based on common spatial model (CSP) and support vector machine (SVM). In this method, the CSP algorithm for extracting spatial characteristics was applied to the detection of epileptic EEG signals. However, the algorithm did not consider the nonlinear dynamic characteristics of the signals and ignored the time-frequency information, so the complementary characteristics of standard deviation, entropy and wavelet packet energy were selected for the combination in the feature extraction stage. The classification process adopted a new double classification model based on SVM. First, the normal, interictal and ictal periods were divided into normal and paroxysmal periods (including interictal and ictal periods), and then the samples belonging to the paroxysmal periods were classified into interictal and ictal periods. Finally, three categories of recognition were realized. The experimental data came from the epilepsy study at the University of Bonn in Germany. The average recognition rate was 98.73% in the first category and 99.90% in the second category. The experimental results show that the introduction of spatial characteristics and double classification model can effectively solve the problem of low recognition rate between interictal and ictal periods in many literatures, and improve the identification efficiency of each period, so it provides an effective detecting means for the prediction of epilepsy.
Focused on the world-wide issue of improving the accuracy of emotion recognition, this paper proposes an electroencephalogram (EEG) signal feature extraction algorithm based on wavelet packet energy entropy and auto-regressive (AR) model. The auto-regressive process can be approached to EEG signal as much as possible, and provide a wealth of spectral information with few parameters. The wavelet packet entropy reflects the spectral energy distribution of the signal in each frequency band. Combination of them gives a better reflect of the energy characteristics of EEG signals. Feature extraction and fusion are implemented based on kernel principal component analysis. Six emotional states from a public multimodal database for emotion analysis using physiological signals (DEAP) are recognized. The results show that the recognition accuracy of the proposed algorithm is more than 90%, and the highest recognition accuracy is 99.33%. It indicates that this algorithm can extract the feature of EEG emotion well, and it is a kind of effective emotion feature extraction algorithm, providing support to emotion recognition.
Clinic expert information provides important references for residents in need of hospital care. Usually, such information is hidden in the deep web and cannot be directly indexed by search engines. To extract clinic expert information from the deep web, the first challenge is to make a judgment on forms. This paper proposes a novel method based on a domain model, which is a tree structure constructed by the attributes of search interfaces. With this model, search interfaces can be classified to a domain and filled in with domain keywords. Another challenge is to extract information from the returned web pages indexed by search interfaces. To filter the noise information on a web page, a block importance model is proposed. The experiment results indicated that the domain model yielded a precision 10.83% higher than that of the rule-based method, whereas the block importance model yielded an F1 measure 10.5% higher than that of the XPath method.
Individual differences of P300 potentials lead to that a large amount of training data must be collected to construct pattern recognition models in P300-based brain-computer interface system, which may cause subjects’ fatigue and degrade the system performance. TrAdaBoost is a method that transfers the knowledge from source area to target area, which improves learning effect in the target area. Our research purposed a TrAdaBoost-based linear discriminant analysis and a TrAdaBoost-based support vector machine to recognize the P300 potentials across multiple subjects. This method first trains two kinds of classifiers separately by using the data deriving from a small amount of data from same subject and a large amount of data from different subjects. Then it combines all the classifiers with different weights. Compared with traditional training methods that use only a small amount of data from same subject or mixed different subjects’ data to directly train, our algorithm improved the accuracies by 19.56% and 22.25% respectively, and improved the information transfer rate of 14.69 bits/min and 15.76 bits/min respectively. The results indicate that the TrAdaBoost-based method has the potential to enhance the generalization ability of brain-computer interface on the individual differences.
Seizures during sleep increase the probability of complication and sudden death. Effective prediction of seizures in sleep allows doctors and patients to take timely treatments to reduce the aforementioned probability. Most of the existing methods make use of electroencephalogram (EEG) to predict seizures, which are not specific developed for the sleep. However, EEG during sleep has its characteristics compared with EEG during other states. Therefore, in order to improve the sensitivity and reduce the false alarm rate, this paper utilized the characteristics of EEG to predict seizures during sleep. We firstly constructed the feature vector including the absolute power spectrum, the relative power spectrum and the power spectrum ratio in different frequencies. Secondly, the separation criterion and branch-and-bound method were applied to select features. Finally, support vector machine classifier were trained, which is then employed for online prediction. Compared with the existing method that do not consider the characteristics of sleeping EEG (sensitivity 91.67%, false alarm rate 9.19%), the proposed method was superior in terms of sensitivity (100%) and false alarm rate (2.11%). This method can improve the existing epilepsy prediction methods and has important clinical value.
Poor and monotonous work could easily lead to a decrease of arousal level of the monitoring work personnel. In order to improve the performance of monitoring work, low arousal level needs to be recognized and awakened. We proposed a recognition method of low arousal by the electroencephalogram (EEG) as the object of study to recognize the low arousal level in the vigilance. We used wavelet packet transform to decompose the EEG signal so the EEG rhythms of each component were obtained, and then we calculated the parameters of relative energy and energy ratio of high-low frequency, and constructed the feature vector to monitor low arousal state in the operation. We finally used support vector machine (SVM) to recognize the low arousal state in the simulate operation. The experimental results showed that the method introduced in this article could well distinguish low arousal level from arousal level in the vigilance and it could also get a high recognition rate. Have been compared with other analysis methods, the present method could more effectively recognize low arousal level and provide better technical support for wake-up mechanism of low arousal state.
Alzheimer’ s disease is the most common kind of dementia without effective treatment. Via early diagnosis, early intervention after diagnosis is the most effective way to handle this disease. However, the early diagnosis method remains to be studied. Neuroimaging data can provide a convenient measurement for the brain function and structure. Brain structure network is a good reflection of the fiber structural connectivity patterns between different brain cortical regions, which is the basis of brain’s normal psychology function. In the paper, a brain structure network based on pattern recognition analysis was provided to realize an automatic diagnosis research of Alzheimer’s disease and gray matter based on structure information. With the feature selection in pattern recognition, this method can provide the abnormal regions of brain structural network. The research in this paper analyzed the patterns of abnormal structural network in Alzheimer’s disease from the aspects of connectivity and node, which was expected to provide updated information for the research about the pathological mechanism of Alzheimer’s disease.
The clinical manifestations of patients with schizophrenia and patients with depression not only have a certain similarity, but also change with the patient's mood, and thus lead to misdiagnosis in clinical diagnosis. Electroencephalogram (EEG) analysis provides an important reference and objective basis for accurate differentiation and diagnosis between patients with schizophrenia and patients with depression. In order to solve the problem of misdiagnosis between patients with schizophrenia and patients with depression, and to improve the accuracy of the classification and diagnosis of these two diseases, in this study we extracted the resting-state EEG features from 100 patients with depression and 100 patients with schizophrenia, including information entropy, sample entropy and approximate entropy, statistical properties feature and relative power spectral density (rPSD) of each EEG rhythm (δ, θ, α, β). Then feature vectors were formed to classify these two types of patients using the support vector machine (SVM) and the naive Bayes (NB) classifier. Experimental results indicate that: ① The rPSD feature vector P performs the best in classification, achieving an average accuracy of 84.2% and a highest accuracy of 86.3%; ② The accuracy of SVM is obviously better than that of NB; ③ For the rPSD of each rhythm, the β rhythm performs the best with the highest accuracy of 76%; ④ Electrodes with large feature weight are mainly concentrated in the frontal lobe and parietal lobe. The results of this study indicate that the rPSD feature vector P in conjunction with SVM can effectively distinguish depression and schizophrenia, and can also play an auxiliary role in the relevant clinical diagnosis.
Objective To explore the white matter microstructural abnormalities in patients with different subtypes of attention-deficit/hyperactivity disorder (ADHD) and establish a diagnostic classification model. Methods Patients with ADHD admitted to West China Hospital of Sichuan University between January 2019 and September 2021 and healthy controls recruited through advertisement were prospectively selected. All participants underwent diffusion tensor imaging scanning. The whole brain voxel-based analysis was used to compare the diffusion parameter maps of fractional anisotropy (FA) among patients with combined subtype of ADHD (ADHD-C), patients with inattentive subtype of ADHD (ADHD-I) and healthy controls. The support vector machine classifier and feature selection method were used to construct the individual ADHD diagnostic classification model and efficiency was evaluated between each two groups of the ADHD patients and healthy controls. Results A total of 26 ADHD-C patients, 24 ADHD-I patients and 26 healthy controls were included. The three groups showed significant differences in FA values in the bilateral sagittal stratum of temporal lobe (ADHD-C<ADHD-I<healthy controls) and the isthmus of corpus callosum (ADHD-C>ADHD-I>healthy controls) (P<0.005). The direct comparison between the two subtypes of ADHD showed that ADHD-C had higher FA than ADHD-I in the right middle frontal gyrus. The classification model differentiating ADHD-C and ADHD-I showed the highest efficiency, with a total accuracy of 76.0%, sensitivity of 88.5%, and specificity of 70.8%. Conclusions There is both commonality and heterogeneity in white matter microstructural alterations in the two subtypes of patients with ADHD. The white matter damage of the sagittal stratum of temporal lobe and the corpus callosum may be the intrinsic pathophysiological basis of ADHD, while the anomalies of frontal brain region may be the differential point between different subtypes of patients.
ObjectiveTo establish a machine learning model based on computed tomography (CT) radiomics for preoperatively predicting invasive degree of lung ground-glass nodules (GGNs). MethodsWe retrospectively analyzed the clinical data of GGNs patients whose solid component less than 3 cm in the Department of Thoracic Surgery of Shanghai Pulmonary Hospital from March 2021 to July 2021 and the First Hospital of Lanzhou University from January 2019 to May 2022. The lesions were divided into pre-invasiveness and invasiveness according to postoperative pathological results, and the patients were randomly divided into a training set and a test set in a ratio of 7∶3. Radiomic features (1 317) were extracted from CT images of each patient, the max-relevance and min-redundancy (mRMR) was used to screen the top 100 features with the most relevant categories, least absolute shrinkage and selection operator (LASSO) was used to select radiomic features, and the support vector machine (SVM) classifier was used to establish the prediction model. We calculated the area under the curve (AUC), sensitivity, specificity, accuracy, negative predictive value, positive predictive value to evaluate the performance of the model, drawing calibration and decision curves of the prediction model to evaluate the accuracy and clinical benefit of the model, analyzed the performance in the training set and subgroups with different nodule diameters, and compared the prediction performance of this model with Mayo and Brock models. Two primary thoracic surgeons were required to evaluate the invasiveness of GGNs to investigate the clinical utility of the model. ResultsA total of 400 patients were divided into the training set (n=280) and the test set (n=120) according to the admission criteria. There were 267 females and 133 males with an average age of 52.4±12.7 years. Finally, 8 radiomic features were screened out from the training set data to build SVM model. The AUC, sensitivity and specificity of the model in the training and test sets were 0.91, 0.89, 0.75 and 0.86, 0.92, 0.60, respectively. The model showed good prediction performance in the training set 0-10 mm, 10-20 mm and the test set 0-10 mm, 10-20 mm subgroups, with AUC values of 0.82, 0.88, 0.84, 0.72, respectively. The AUC of SVM model was significantly better than that of Mayo model (0.73) and Brock model (0.73). With the help of this model, the AUC value, sensitivity, specificity and accuracy of thoracic surgeons A and B in distinguishing invasive or non-invasive adenocarcinoma were significantly improved. ConclusionThe SVM model based on radiomics is helpful to distinguish non-invasive lesions from invasive lesions, and has stable predictive performance for GGNs of different sizes and has better prediction performance than Mayo and Brock models. It can help clinicians to more accurately judge the invasiveness of GGNs, to make more appropriate diagnosis and treatment decisions, and achieve accurate treatment.