1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

        <em id="8sgz1"><label id="8sgz1"></label></em>
      2. <em id="8sgz1"><label id="8sgz1"></label></em>
        <em id="8sgz1"></em>
        <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

        <button id="8sgz1"></button>
        west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "temporal-spatial feature" 1 results
        • Convolutional neural network based on temporal-spatial feature learning for motor imagery electroencephalogram signal decoding

          With the advantage of providing more natural and flexible control manner, brain-computer interface systems based on motor imagery electroencephalogram (EEG) have been widely used in the field of human-machine interaction. However, due to the lower signal-noise ratio and poor spatial resolution of EEG signals, the decoding accuracy is relative low. To solve this problem, a novel convolutional neural network based on temporal-spatial feature learning (TSCNN) was proposed for motor imagery EEG decoding. Firstly, for the EEG signals preprocessed by band-pass filtering, a temporal-wise convolution layer and a spatial-wise convolution layer were respectively designed, and temporal-spatial features of motor imagery EEG were constructed. Then, 2-layer two-dimensional convolutional structures were adopted to learn abstract features from the raw temporal-spatial features. Finally, the softmax layer combined with the fully connected layer were used to perform decoding task from the extracted abstract features. The experimental results of the proposed method on the open dataset showed that the average decoding accuracy was 80.09%, which is approximately 13.75% and 10.99% higher than that of the state-of-the-art common spatial pattern (CSP) + support vector machine (SVM) and filter bank CSP (FBCSP) + SVM recognition methods, respectively. This demonstrates that the proposed method can significantly improve the reliability of motor imagery EEG decoding.

          Release date:2021-04-21 04:23 Export PDF Favorites Scan
        1 pages Previous 1 Next

        Format

        Content

          1. <div id="8sgz1"><ol id="8sgz1"></ol></div>

            <em id="8sgz1"><label id="8sgz1"></label></em>
          2. <em id="8sgz1"><label id="8sgz1"></label></em>
            <em id="8sgz1"></em>
            <div id="8sgz1"><ol id="8sgz1"><mark id="8sgz1"></mark></ol></div>

            <button id="8sgz1"></button>
            欧美人与性动交α欧美精品