ObjectiveTo summarize the research progress of hepatocellular carcinoma (HCC) based on tumor microenvironment immunophenotyping.MethodThe related literatures of basic and clinical studies on HCC immunophenotyping in the recent years were reviewed.ResultsHCC could be divided into different immunophenotypes based on tumor microenvironment, and it showed different immune molecular characteristics, immune cell infiltration characteristics, and anti-tumor ability. At the same time, the HCC immunophenotype was significantly associated with patients’ survival and had been proved to be able to better evaluate the prognosis of HCC patients. According to the relevant molecular characteristics in the HCC immune microenvironment, it could provide guidance for the drug regimen of immunotherapy.ConclusionHCC immunophenotyping is still in the early stage of research, and its clinical application value has been preliminarily shown for the evaluation of patients’ prognosis and immunotherapy decision-making, which is a new idea of individualized treatment of HCC in the future.
ObjectiveTo summarize the molecular mechanisms and clinical treatment of gastric cancer with liver metastasis (GCLM), in order to provide new ideas for future treatment. MethodThe literatures about mechanism and treatment strategy of GCLM in recent years were searched and reviewed. ResultsMost patients with gastric cancer were in advanced stage or had developed distant metastases when they were first diagnosed, among which liver was the common site of metastasis. The complex molecular mechanisms of GCLM had not been fully clarified. Molecular mechanisms at different levels, including non-coding RNA, circulating tumor cells, exosomes, tumor microenvironment and signaling pathways, were relatively independent and interacted with each other, providing potential biomarkers and therapeutic targets for GCLM. At present, the best treatment method for patients with GCLM was mainly divided into local and systemic treatment. The local treatment included surgical treatment, radiofrequency ablation and proton beam therapy, while the systemic treatment included systemic chemotherapy, targeted therapy and immunotherapy, among which the targeted therapy and immunotherapy were the focus of recent research. ConclusionsThe mechanism of GCLM is the result of the interaction between tumor cells and the microenvironment at the site of metastasis. Understanding them is of great significance to guide clinical treatment and prognosis. At present, there is no unified treatment standard for GCLM. To achieve the ideal treatment effect, we should not only rely on single therapy, but also adopt multi-disciplinary and individual therapy according to the specific disease status of patients and the nature of tumors.
Objective
To summarize research status and mechanism about effects of carcinoma-associated fibroblasts (CAFs) on breast cancer stem cells.
Method
Relevant literatures about the relationship between the CAFs and breast cancer stem cells were collected and reviewed.
Results
CAFs were the majority type of the breast cancer stromal cells. The cancer stromal cell was also the important part of the tumor microenvironment, which could promote the proliferation, adhesion, invasion, and metastasis of the breast cancer. A subpopulation of cancer stem cells with the potentials of self-renewal and multi-directional differentiation in the breast cancer tissues might cause the tumor development. There was a phenotypic heterogeneity in the beast cancer stem cells, it was related to the tumor recurrence and therapy resistance. The CAFs could promote the formation of breast cancer stem cells through the epithelial mesenchymal transition and promote the transformation of tumor stem cell phenotype. More research needed to be done to prove these processes.
Conclusion
CAFs play an important role in formation of breast cancer stem cells and transformation of tumor stem cell phenotype, which might provide a new idea about treating breast cancer.
Objective To summarize the changes in the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) in the context of immunotherapy and their impact on treatment outcomes. MethodsA systematic review of recent studies on the TME of PDAC was carried out to analyze the immune properties, intercellular interactions, and biological functions of its cellular and non-cellular components, disclose the molecular mechanisms of immunotherapy affects on the TME, explore the advancements in targeted therapy and potential biomarkers, and analyze the challenges in clinical applications and their impacts on the quality of life of patients. ResultsThe TME of PDAC exhibits highly immunosuppressive and heterogeneous characteristics, rich in diverse cells (such as pancreatic cancer cells, stellate cells, cancer-associated fibroblasts, immune cells) and non-cellular components (such as extracellular matrix). Immunotherapy is capable of regulating the immune balance in the TME and enhancing the anti-tumor response. Despite the progress made in multiple immunotherapy strategies (such as immune checkpoint inhibitors, chimeric antigen receptor cell therapy), challenges such as difficulty in selecting targets, drug resistance, and side effects still persist. Meanwhile, potential biomarkers such as leukemia inhibitory factor offer new directions for individualized treatment. ConclusionsThe TME of PDAC undergoes continuous changes during immunotherapy. In the future, it is requisite to integrate new technologies to deeply explore targets and biomarkers, optimize multimodal precise treatment strategies, enhance the safety and efficacy of immunotherapy, and improve the prognosis of patients.
ObjectiveTo investigate the effect of ubiquitin specific peptidase 22 (USP22) on the occurrence and development of esophageal squamous cell carcinoma (ESCC) under hypoxic conditions, and its regulatory relationship with hypoxia inducible factor-1α (HIF-1α). MethodsWestern blotting and quantitative polymerase chain reaction (qPCR) were used to detect the differences in USP22 protein and mRNA expression between normal esophageal epithelial cells HEEC and ESCC cell lines KYSE30, KYSE150, EC9706, and TE-1 under normoxic (5% CO2, 20% O2, 75% N2) and hypoxic (5% CO2, 1% O2, 94% N2) conditions. By transfecting USP22 plasmid or siUSP22, ESCC cells were divided into a normoxia control group, a normoxia+USP22 group, a normoxia+siUSP22 group, a hypoxia control group, a hypoxia+USP22 group, and a hypoxia+siUSP22 group. The proliferation and migration abilities of cells in each group were detected. The expression of USP22 and HIF-1α under hypoxic conditions after up-regulating or down-regulating USP22 was detected, and their regulatory relationship was verified. The interaction between USP22 and HIF-1α was verified by co-immunoprecipitation (Co-IP) technique. ResultsCompared with HEEC cells, the expression of USP22 in ESCC cells was significantly increased (P<0.05). Up-regulation of USP22 expression promoted the proliferation and migration of ESCC cells, while silencing USP22 inhibited the proliferation and migration of ESCC cells (P<0.05). Under hypoxic conditions, the expression of USP22 and HIF-1α increased, and with the up-regulation of USP22 expression, the expression of HIF-1α also significantly increased (P<0.05). Co-IP experiment confirmed the binding between USP22 and HIF-1α. ConclusionUp-regulation of USP22 expression promotes the proliferation and migration of ESCC cells. Hypoxia microenvironment can induce the increase of USP22 expression in ESCC. USP22 may participate in the regulation of the occurrence and development of ESCC by directly binding to HIF-1α.
ObjectiveTo detect the expression of programmed cell death ligand 1 (PD-L1) in papillary thyroid carcinoma (PTC) and PTC with coexistent Hashimoto’s thyroiditis (HT) tissues, and to explore its clinical significance of its expression.MethodsThe PTC patients who underwent thyroidectomy at the Thyroid Surgery Department of the Affiliated Hospital of Guizhou Medical University from March 2017 to May 2019 were retrospectively collected. Immunohistochemical staining was used to detect the expression of PD-L1 in the PTC tissues, PD-L1 staining positive cells ≥20% was judged as positive expression, <20% was judged as negative expression. The relationship between PD-L1 positive expression rate and clinicopathologic characteristics of patients with PTC were analyzed, and the correlation between the presence of HT in PTC tissues and PD-L1 positive expression was studied.ResultsA total of 138 patients with PTC were included in this study, including 104 patients with PTC alone and 34 PTC patients with coexistent HT. The positive rate of PD-L1 expression in the 138 cases of PTC tissues was 35.5% (49/138), among which was 43.3% (45/104) in the pure PTC tissues, and 11.8% (4/34) in the PTC tissues with HT, the latter was significantly lower than the former (P=0.001). The results of univariate analysis showed that the positive rate of PD-L1 expression was related to the tumor size, the presence or absence of extraglandular invasion and HT in PTC patients (P<0.05), and the results of Spearman correlation analysis showed that the positive rate of PD-L1 expression was positively correlated with tumor size (rs=0.173, P=0.041) and extraglandular invasion (rs=0.197, P=0.021), and negatively correlated with whether TH was merged (rs=–0.284, P=0.001). The multivariate analysis results showed that the positive rate of PD-L1 expression was closely related to whether PTC with coexistent HT [OR=5.720, 95%CI (1.879, 17.411), P=0.002], and it was not found to be related to tumor size and presence of extraglandular invasion (P>0.05).ConclusionsPositive rate of PD-L1 expression has a certain relationship with tumor size and presence or absence of extraglandular invasion, and which in PTC patients with or without HT is significantly different, that is, positive rate of PD-L1 expression in PTC with HT is lower suggests that coexistent HT might be an inhibitory factor in occurrence of PTC, and immune microenvironment-related factors of PTC might be involved in occurrence and development of thyroid cancer.
ObjectiveTo investigate the effect of Wnt5a derived from tumor-associated fibroblasts (CAFs) on the migration and invasion of gastric cancer cells. MethodsThe differentially expressed genes Wnt5a between CAFs and normal gastric fibroblasts (NGFs) in gastric cancer tissues and their corresponding normal gastric tissues using the GEO database GSE194261 dataset were screened. Immunohistochemical method was used to detect the expression of Wnt5a protein in tissue samples of clinical gastric cancer patients, and the relationship between Wnt5a protein expression and clinicopathological features of gastric cancer was analyzed. CAFs and NGFs were extracted from fresh surgical specimens of gastric cancer patients, and the expression of Wnt5a in CAFs was detected by real-time fluorescence quantitative-polymerase chain reaction and Western blot experiment. Transwell invasion and migration experiment was used to observe the effects of CAFs, inhibition of Wnt5a expression in CAFs and different concentrations of recombinant Wnt5a protein on the migration and invasion ability of gastric cancer MGC-803 and MKN-28 cell lines in vitro. ResultsThrough the screening of GEO database GSE194261 data set, it was found that Wnt5a was more expressed in CAFs than NGFs (P<0.05). Immunohistochemical results showed that the expression of Wnt5a protein in gastric cancer tissues was significantly stronger than that in normal gastric tissues (P<0.05), and the expression of Wnt5a protein was related to T stage of tumor (χ2=5.035, P<0.05), but not related to gender, age, degree of tumor differentiation, lymph node metastasis, vascular invasion and nerve invasion (P>0.05). Inhibiting Wnt5a derived from CAFs could inhibit the invasion and migration of gastric cancer cells. By stimulating gastric cancer cells with different concentrations of human recombinant Wnt5a protein, it was found that when the concentration of human recombinant Wnt5a protein was greater than 100 ng/mL, the invasion and migration abilities of MGC-803 and MKN-28 gastric cancer cells were significantly increased (P<0.05). ConclusionWnt5a is highly expressed in CAFs derived from the interstitial tissue of gastric cancer, which is related to the invasion depth of gastric cancer and can promote the invasion and migration of gastric cancer cells.
ObjectiveTo understand the single-cell RNA sequencing (scRNA-seq) and its research progress in the tumor microenvironment (TME) of breast cancer, in order to provide new ideas and directions for the research and treatment of breast cancer. MethodThe development of scRNA-seq technology and its related research literature in breast cancer TME at home and abroad in recent years was reviewed. ResultsThe scRNA-seq was a quantum technology in high-throughput sequencing of mRNA at the cellular level, and had become a powerful tool for studying cellular heterogeneity when tissue samples were fewer. While capturing rare cell types, it was expected to accurately describe the complex structure of the TME of breast cancer. ConclusionsAfter decades of development, scRNA-seq has been widely used in tumor research. Breast cancer is a malignant tumor with high heterogeneity. The application of scRNA-seq in breast cancer research can better understand its tumor heterogeneity and TME, and then promote development of personalized diagnosis and treatment.
ObjectiveTo explore the changes of cytokines in the tumor microenvironment of colorectal cancer and the relationship between the expression of CD16a mRNA and cytokines in the microenvironment.MethodsRT-PCR and flow cytometry microsphere array (CBA) were used to detect the expressions of CD16a mRNA, as well as cytokines of Th1 [interleukin (IL)-2, IL-12, and interferone-γ (IFN-γ)], Th2 (IL-4, IL-6, and IL-10), tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) in the tumor and the adjacent tissues of 42 patients with colorectal cancer, respectively, and the correlation between the expression of CD16a mRNA and cytokines in the microenvironment was analyzed.ResultsThe expressions of IL-6, TNF-α, and VEGF in colorectal cancer tissues were significantly higher than those in the adjacent tissues (P<0.05). There was no significant difference in the expression of IL-2,IL-4, IL-10, IL-12, and IFN-γ between the two kinds of tissues (P>0.05). Clinicopathological factor analysis showed that, the levels of IL-6 and VEGF in the colorectal cancer patients with preoperative normal CEA were significantly higher than those with elevated CEA (P<0.05). Correlation analysis showed that the expression of IL-6 was negatively correlated with expression of CD16a mRNA (P<0.05).ConclusionsThe expressions of IL-6, TNF-α, and VEGF in tumor tissues were significantly higher than adjacent tissues, and the effect of angiogenic and immunosuppression were enhanced. The expression of CD16a mRNA in the microenvironment of colorectal cancer tumor is negatively correlated with the expression of IL-6.
Objective To investigate the relationship between the expression of mast cell expressed membrane protein 1 (MCEMP1) in gastric cancer and its relationship with prognosis and tumor immune infiltration. Methods Transcriptome expression profile data and clinical data information of gastric cancer and normal samples were downloaded from TCGA database, and differentially expressed genes in gastric cancer tumor microenvironment were extracted using R 4.0.5 software. Protein-protein interaction network of differentially expressed genes was constructed by using STRING online website, protein-protein interaction network and univariate Cox proportional hazards regression analysis were used for cross-tabulation analysis to obtain key genes. Kruskal-Wallis rank sum test was used to investigate the correlation between key genes and clinicopathological features. The possible signaling pathways involved in key genes were predicted by gene set enrichment analysis. We further analyzed the relationship between expression of key gene and the level of immune infiltration and immune molecules in gastric cancer by TISIDB online database and CIBERSORT algorithm. Results A total of 760 differentially expressed genes in gastric cancer were found and a key gene of MCEMP1 was derived from cross-tabulation analysis based on the results of protein-protein interaction network and univariate Cox proportional hazards regression analysis. Expression of MCEMP1 was significantly upregulated in gastric cancer tissues (P<0.001), and survival analysis showed that the overall survival rate of the group with high expression level of MCEMP1 was lower than that of low expression [HR=1.176, 95%CI (1.066, 1.297), P=0.046]. Expression of MCEMP1 also correlated with age, T-stage, and clinical stage of gastric cancer (P<0.05) , and expression of MCEMP1 was significantly associated with a variety kinds of immune cells and expression of immune molecules (P<0.05). Conclusion MCEMP1 is a potential prognostic marker for gastric cancer and is associated with immune infiltration in gastric cancer.