ObjectiveTo evaluate the effects of icariin on autophagy induced by low-concentration of glucocorticoid and exosome production in bone microvascular endothelial cells (BMECs).MethodsBMECs were isolated from femoral heads resected in total hip arthroplasty and then intervened with hydrocortisone of low concentration (0, 0.03, 0.06, 0.10 mg/mL), which were set as groups A, B, C, and D, respectively. On the basis of hydrocortisone intervention, 5×10?5 mol/L of icariin was added to each group (set as groups A1, B1, C1 and D1, respectively). Western blot was used to detect the expressions of microtubule-associated protein 1 light chain 3B (LC3B) and dead bone slice 1 (p62) after 24 hours. Exosomes were extracted from BMECs treated with icariin (intervention group) and without icariin (non-intervention group), and the diameter and concentration of exosomes were evaluated by nanoparticle tracking analysis technique. The total protein content of exosomes was detected by BCA method, and the expressions of proteins carried by exosomes including CD9, CD81, transforming growth factor β1 (TGF-β1), and vascular endothelial growth factor A (VEGFA) were assessed by Western blot. The BMECs were further divided into three groups: BMECs in the experimental group and the control group were co-cultured with exosomes secreted by BMECs treated with or without icariin, respectively; the blank control group was BMECs without exosome intervention. The three groups were treated with hydrocortisone and Western blot was used to detect the expressions of LC3B and p62. The scratching assay was used to detect cell migration ability; angiogenic ability of BMECs was also assessed.ResultsWith the increase of hydrocortisone concentration, the protein expression of LC3B-Ⅱ increased gradually, and the protein expression of p62 decreased gradually (P<0.01). Compared with group with same concentration of hydrocortisone, the protein expression of LC3B-Ⅱ decreased and the protein expression of p62 increased after the administration of icariin (P<0.01). The concentration of exosomes in the intervention group was significantly higher than that in the non-intervention group (t=?10.191, P=0.001); and there was no significant difference in exosome diameter and total protein content between the two groups (P>0.05). CD9 and CD81 proteins were highly expressed in the non-intervention group and the intervention group, and the relative expression ratios of VEGFA/CD9 and TGF-β1/CD9 proteins in the intervention group were significantly higher than those in the non-intervention group (P<0.01). After co-culture of exosomes, the protein expression of p62 increased in blank control group, control group, and experimental group, while the protein expression of LC3B-Ⅱ decreased. There were significant differences among groups (P<0.05). When treated with hydrocortisone for 12 and 24 hours, the scratch closure rate of the control group and experimental group was significantly higher than that of the blank control group (P<0.05), and the scratch closure rate of the experimental group was significantly higher than that of the control group (P<0.05). When treated with hydrocortisone for 4 and 8 hours, the number of lumens, number of sprouting vessels, and length of tubule branches in the experimental group and the control group were significantly greater than those in the blank control group (P<0.05); the length of tubule branches and the number of lumens in the experimental group were significantly greater than those in the control group (P<0.05).ConclusionIcariin and BMECs-derived exosomes can improve the autophagy of BMECs induced by low concentration of glucocorticoid.
ObjectiveTo observe the effects of p21 activated kinase 4 (PAK4) on the mitochondrial function and biological behavior in retinal vascular endothelial cells. MethodsThe experimental study was divided into two parts: in vivo animal experiment and in vitro cell experiment. In vivo animal experiments: 12 healthy C57BL/6J male mice were randomly divided into normal control group and diabetes group, with 6 mice in each group. Diabetes mice were induced by streptozotocin to establish diabetes model. Eight weeks after modeling, quantitative real-time polymerase chain reaction and Western blots were performed to detect the expression of PAK4 in diabetic retinas. In vitro cell experiments: the human retinal microvascular endothelial cells (hRMEC) were divided into three groups: conventional cultured cells group (N group), empty vector transfected (Vector group); pcDNA-PAK4 eukaryotic expression plasmid transfected group (PAK4 group). WB and qPCR were used to detect transfection efficiency, while scratching assay, cell scratch test was used to detect cell migration in hRMEC of each group. In vitro white blood cell adhesion experiment combined with 4 ', 6-diamino-2-phenylindole staining was used to detect the number of white blood cells adhering to hRMEC in each group. The Seahorse XFe96 cell energy metabolism analyzer measures intracellular mitochondrial basal respiration, adenosine triphosphate (ATP) production, maximum respiration, and reserve respiration capacity. The t-test was used for comparison between the two groups. Single factor analysis of variance was used for comparison among the three groups. ResultsIn vivo animal experiments: compared with normal control group, the relative expression levels of PAK4 mRNA and protein in retina of diabetic mice were significantly increased, with statistical significance (t=25.372, 22.419, 25.372; P<0.05). In vitro cell experiment: compared with the N group and Vector group, the PAK4 protein, mRNA relative expression and cell mobility in the hRMEC of PAK4 group were significantly increased, with statistical significance (F=36.821, 38.692, 29.421; P<0.05). Flow cytometry showed that the adhesion number of leukocytes on hRMEC in PAK4 group was significantly increased, and the difference was statistically significant (F=39.649, P<0.01). Mitochondrial pressure measurement results showed that the capacity of mitochondrial basic respiration, ATP production, maximum respiration and reserve respiration in hRMEC in PAK4 group was significantly decreased, with statistical significance (F=27.472, 22.315, 31.147, 27.472; P<0.05). ConclusionOver-expression of PAK4 impairs mitochondrial function and significantly promotes leukocyte adhesion and migration in retinal vascular endothelial cells.
Objective To explore the effect of natural hirudin on proliferation of human microvascular endothelial cells (HMVECs) and its preliminary mechanism of promoting angiogenesis. Methods Three-dimensional culture models of HMVECs were established in vitro and observed by inverted phase contrast microscopy after 24 hours of culturing. Then, the three-dimensional culture models of HMVECs were treated with different concentrations (1, 4, and 7 ATU/mL) of the natural hirudin, respectively, and Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum as control. The cell proliferations of 4 groups were detected by cell counting kit 8 (CCK-8) method at 24, 48, and 72 hours; the angiogenesis of 4 groups were observed by tube formation assay at 24 hours; the expressions of vascular endothelial growth factor (VEGF) and Notch1 of HMVECs in 4 groups were observed by immunofluorescence staining at 24 hours. Results The observation of cells in three-dimensional culture models showed that HMVECs attached to Matrigel well, and the cells formed tube structure completely after 24 hours. The results of CCK-8 test showed that the absorbance (A) value of 1 and 4 ATU/mL groups were higher than that of control group at each time point (P<0.05), andA value of 4 ATU/mL group was the highest. The A value of 7 ATU/mL group was significantly lower than those of 1 and 4 ATU/mL groups and control group (P<0.05). The tube formation assay showed that the tube structure was more in 1 and 4 ATU/mL groups than in 7 ATU/mL group and control group, and in 4 ATU/mL group than in 1 ATU/mL group, showing significant differences (P<0.05). There was no significant difference between 7 ATU/mL group and control group (P>0.05). The results of immunofluorescence staining showed that compared with control group, the Notch1 expression was higher in 1 and 4 ATU/mL groups and lower in 7 ATU/mL group; and there was significant difference between 4 and 7 ATU/mL groups and control group (P<0.05). The VEGF expression was higher in 1, 4, and 7 ATU/mL groups than in control group, in 4 ATU/mL group than in 1 and 7 ATU/mL groups, showing significant differences (P<0.05). Conclusion Natural hirudin can promote angiogenesis at low and medium concentrations, but suppress angiogenesis at high concentrations. Its mechanism may be related to the VEGF-Notch signal pathway.
Objective To observe the effects of overexpression of polypyrimidine tract binding protein-associated splicing factor (PSF) on the endoplasmic reticulum (ER) oxidative stress damage of human retinal microvascular endothelial cells (hRMEC) under high concentration of 4-hydroxynonenal (4-HNE). MethodsThe logarithmic growth phase hRMEC cultured in vitro was divided into normal group, simple 4-HNE treatment group (simple 4-HNE group), empty plasmid combined with 4-HNE treatment group (Vec+4-HNE group), and PSF high expression combined with 4-HNE treatment group (PSF+4-HNE group). In 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group cell culture medium, 10 μmol/L 4-HNE was added and stimulated for 12 hours. Subsequently, the Vec+4-HNE group and PSF+4-HNE group were transfected with transfection reagent liposome 2000 into pcDNA empty bodies and pcDNA-PSF eukaryotic expression plasmids, respectively, for 24 hours. Flow cytometry was used to detect the effects of 4-HNE and PSF on cell apoptosis. The effect of PSF overexpression on the expression of reactive oxygen species (ROS) in hRMEC was detected by 2', 7'-dichlorodihydrofluorescein double Acetate probe. Western blot was used to detect ER oxide protein 1 (Ero-1), protein disulfide isomerase (PDI), C/EBP homologous transcription factor (CHOP), glucose regulatory protein (GRP) 78, protein kinase R-like ER kinase (PERK)/phosphorylated PERK (p-PERK), and Eukaryotic initiation factor (eIF) 2α/the relative expression levels of phosphorylated eIF (peIF) and activated transcription factor 4 (ATF4) proteins in hRMEC of normal group, 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group. Single factor analysis of variance was performed for inter group comparison. ResultsThe apoptosis rates of the simple 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group were (22.50±0.58)%, (26.93±0.55)%, and (11.70±0.17)%, respectively. The intracellular ROS expression levels were 0.23±0.03, 1.60±0.06, and 0.50±0.06, respectively. The difference in cell apoptosis rate among the three groups was statistically significant (F=24.531, P<0.05). The expression level of ROS in the Vec+4-HNE group was significantly higher than that in the simple 4-HNE group and the PSF+4-HNE group, with a statistically significant difference (F=37.274, P<0.05). The relative expression levels of ER Ero-1 and PDI proteins in the normal group, simple 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group were 1.25±0.03, 0.45±0.03, 0.63±0.03, 1.13±0.09, and 1.00±0.10, 0.27±0.10, 0.31±0.05, and 0.80±0.06, respectively. The relative expression levels of CHOP and GRP78 proteins were 0.55±0.06, 1.13±0.09, 0.90±0.06, 0.48±0.04 and 0.48±0.04, 1.25±0.03, 1.03±0.09, 0.50±0.06, respectively. The relative expression levels of Ero-1 (F=43.164), PDI (F=36.643), CHOP (F=42.855), and GRP78 (F=45.275) proteins in four groups were compared, and the differences were statistically significant (P<0.05). Four groups of cells ER p-pERK/pERK (F=35.755), peIF2 α/ The relative expression levels of eIF (F=38.643) and ATF4 (F=31.275) proteins were compared, and the differences were statistically significant (P<0.05). ConclusionPSF can inhibit cell apoptosis and ROS production induced by high concentration of 4-HNE, and its mechanism is closely related to restoring the homeostasis of ER and down-regulating the activation level of PERK/eIF2α/ATF4 pathway.
Objective To observe the effect of Nodal on the biological behavior of retinal vascular endothelial cells (RF/6A cells) in monkeys with high glucose. MethodsRF/6A cells were divided into normal group, mannitol group, high glucose group, high glucose combined with non-specific small interfering RNA treatment group (HG+NC group), high glucose combined with small interfering Nodal treatment group (HG+siNodal group). The transfection efficiency of siNodal was observed by real-time fluorescence quantitative PCR and western blot protein immunoblotting. The effect of Nodal on the proliferation of RF/6A cells was detected by thiazole blue colorimetry. The effect of Nodal on migration ability of RF/6A cells was detected by cell scratch assay. The effect of Nodal on the formation of RF/6A cell lumen was measured by Matrigel three-dimensional in vitro. The expression of extracellular signal phosphorylated regulated kinase 1/2 (pERK1/2) in RF/6A cells was detected by western blot protein immunoblotting. One-way analysis of variance was used to compare groups. ResultsCompared with HG+NC group, Nodal protein (F=33.469) and mRNA relative expression levels (F=38.191) in HG+siNodal group were significantly decreased, cell proliferation was significantly decreased (F=28.548), and cell migration ability was significantly decreased (F=24.182). The number of cell lumen formation was significantly decreased (F=52.643), and the differences were statistically significant (P<0.05). Compared with HG+NC group, the relative expression of pERK1/2 protein in HG+siNodal group was significantly decreased, and the difference was statistically significant (F=44.462, P<0.01). ConclusionsSilencing Nodal expression can inhibit proliferation, migration and tube formation of RF/6A cells induced by high glucose. It may act by inhibiting pERK1/2 expression.
Objective To observe the effect of high expression of polypyrimidine tract-binding protein-associated splicing factor (PSF) on low concentration of 4-hydroxynonenal (4-HNE) induced human retinal microvascular endothelial cells (HRMECs), and explore the possible mechanism. MethodsThe HRMECs cultured in vitro were divided into 4-HNE treated group, PSF overexpression group combined with 4-HNE group (PSF+4-HNE group), PSF overexpression+ML385 treatment combined with 4-HNE group (PSF+ML385+4-HNE group), and 4-HNE induced PSF overexpression group with LY294002 pretreatment (LY294002+4-HNE+PSF group). Cell culture medium containing 10 μmmol/L 4-HNE was added into 4-HNE treatment group, PSF+4-HNE group, PSF+ML385+4-HNE group for 12 hours to stimulate oxidative stress. 1.0 μg of pcDNA-PSF eukaryotic expression plasmid were transfected into PSF+4-HNE group and PSF+ML385+4-HNE group to achieve the overexpression of PSF. Also cells were pretreated with ML385 (5 μmol/L) for 48 hours in the PSF+ML385+4-HNE group, meanwhile within the LY294002+4-HNE+PSF group, after pretreatment with LY294002, cells were treated with plasmid transfection and 4-HNE induction. Transwell detects the migration ability of PSF to HRMECs. The effect of PSF on the lumen formation of HRMECs was detected by using Matrigel in vitro three-dimensional molding method. Flow cytometer was used to detect the effect of PSF overexpression on reactive oxygen (ROS) level in HRMECs. Protein immunoblotting was used to detect the relative expression of PSF, nuclear factor E2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1) protein, and phosphoserine threonine protein kinase (pAkt) protein. The comparison between the two groups was performed using a t-test. ResultsThe number of live cells, migrating cells, and intact lumen formation in the 4-HNE treatment group and the PSF+4-HNE group were 1.70±0.06, 0.80±0.13, 24.00±0.58, 10.00±0.67, and 725.00±5.77, 318.7±12.13, respectively. There were significant differences in the number of live cells, migrating cells, and intact lumen formation between the two groups (t=12.311, 15.643, 17.346; P<0.001). The results of flow cytometry showed that the ROS levels in the 4-HNE treatment group, PSF+4-HNE group, and PSF+ML385+4-HNE group were 816.70±16.67, 416.70±15.44, and 783.30±17.41, respectively. There were statistically significant differences between the two groups (t=16.311, 14.833, 18.442; P<0.001). Western blot analysis showed that the relative expression levels of pAkt, Nrf2, and HO-1 proteins in HRMECs in the 4-HNE treatment group, PSF+4-HNE group and LY294002+4-HNE+PSF group were 0.08±0.01, 0.57±0.04, 0.35±0.09, 0.17±0.03, 1.10±0.06, 0.08±0.11 and 0.80±0.14, 2.50±0.07, 0.50±0.05, respectively. Compared with the PSF+4-HNE group, the relative expression of pAkt, Nrf2, and HO-1proteins in the LY294002+4-HNE+PSF group decreased significantly, with significant differences (t=17.342, 16.813, 18.794; P<0.001). ConclusionPSF upregulates the expression of HO-1 by activating the phosphatidylinositol 3 kinase/Akt pathway and inhibits cell proliferation, migration, and lumen formation induced by low concentrations of 4-HNE.
ObjectiveTo explore the effect of Kaempferol on bone microvascular endothelial cells (BMECs) in glucocorticoid induced osteonecrosis of the femoral head (GIONFH) in vitro. MethodsBMECs were isolated from cancellous bone of femoral head or femoral neck donated voluntarily by patients with femoral neck fracture. BMECs were identified by von Willebrand factor and CD31 immunofluorescence staining and tube formation assay. The cell counting kit 8 (CCK-8) assay was used to screen the optimal concentration and the time point of dexamethasone (Dex) to inhibit the cell activity and the optimal concentration of Kaempferol to improve the inhibition of Dex. Then the BMECs were divided into 4 groups, namely, the cell group (group A), the cells treated with optimal concentration of Dex group (group B), the cells treated with optimal concentration of Dex+1 μmol/L Kaempferol group (group C), and the cells treated with optimal concentration of Dex+5 μmol/L Kaempferol group (group D). EdU assay, in vitro tube formation assay, TUNEL staining assay, Annexin Ⅴ/propidium iodide (PI) staining assay, Transwell migration assay, scratch healing assay, and Western blot assay were used to detect the effect of Kaempferol on the proliferation, tube formation, apoptosis, migration, and protein expression of BMECs treated with Dex. ResultsThe cultured cells were identified as BMECs. CCK-8 assay showed that the optimal concentration and the time point of Dex to inhibit cell activity was 300 μmol/L for 24 hours, and the optimal concentration of Kaempferol to improve the inhibitory activity of Dex was 1 μmol/L. EdU and tube formation assays showed that the cell proliferation rate, tube length, and number of branch points were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). TUNEL and Annexin V/PI staining assays showed that the rates of TUNEL positive cells and apoptotic cells were significantly higher in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Scratch healing assay and Transwell migration assay showed that the scratch healing rate and the number of migration cells were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Western blot assay demonstrated that the relative expressions of Cleaved Caspase-3 and Bax proteins were significantly higher in groups B-D than in group A, and in groups B and D than in group C (P<0.05); the relative expressions of matrix metalloproteinase 2, Cyclin D1, Cyclin E1, VEGFA, and Bcl2 proteins were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Conclusion Kaempferol can alleviate the damage and dysfunction of BMECs in GIONFH.
To study the potential molecular mechanism of tumor angiogenesis in its microenvironment, we investigated the effects of HepG2 conditioned medium on the proliferation of vascular endothelial cell and vascular angiogenesis in our laboratory. Human umbilical vein endothelial EA.hy926 cells were co-cultured with HepG2 conditioned medium in vitro. The proliferation and the tubulogenesis of EA.hy926 cells were detected by teramethylazo salt azole (MTT) and tube formation assay, respectively. The results showed that the survival rate of the EA.hy926 cells was significantly increased under the co-culture condition. HepG2 conditioned medium also enhanced the angiogenesis ability of EA.hy926 cells. In addition, the expressions of intracellular VEGF and extracellular VEGFR (Flk-1) were regulated upward in a time-dependent manner. In conclusion, the proliferation of vascular endothelial cells and Vascula angiogenesis were improved under the condition of indirect co-culture.
ObjectiveTo investigate the heterotopic osteogenesis of tissue engineered bone using the co-culture system of vascular endothelial cells (VECs) and adipose-derived stem cells (ADSCs) as seed cells.MethodsThe partially deproteinized biological bone (PDPBB) was prepared by fibronectin combined with partially deproteinized bone (PDPB). The ADSCs of 18-week-old Sprague Dawley (SD) rats and VECs of cord blood of full-term pregnant SD rats were isolated and cultured. Three kinds of tissue engineered bone were constructed in vitro: PDPBB+VECs (group A), PDPBB+ADSCs (group B), PDPBB+co-cultured cells (VECs∶ADSCs was 1∶1, group C), and PDPBB was used as control group (group D). Scanning electron microscopy was performed at 10 days after cell transplantation to observe cell adhesion on scaffolds. Forty-eight 18-week-old SD rats were randomly divided into groups A, B, C, and D, with 12 rats in each group. Four kinds of scaffolds, A, B, C, and D, were implanted into the femoral muscle bags of rats in corresponding groups. The animals were killed at 2, 4, 8, and 12 weeks after operation for gross observation, HE staining and Masson staining histological observation, and the amount of bone collagen was measured quantitatively by Masson staining section.ResultsScanning electron microscopy showed that the pores were interconnected in PDPB materials, and a large number of lamellar protein crystals on the surface of PDPBB modified by fibronection were loosely attached to the surface of the scaffold. After 10 days of co-culture PDPBB and cells, a large number of cells attached to PDPBB and piled up with each other to form cell clusters in group C. Polygonal cells and spindle cells were mixed and distributed, and some cells grew along bone trabeculae to form cell layers. Gross observation showed that the granulation tissue began to grow into the material pore at 2 weeks after operation. In group C, a large number of white cartilage-like substances were gradually produced on the surface of the material after 4 weeks, and the surface of the material was uneven. At 12 weeks, the amount of blood vessels on the surface of group A increased, and the material showed consolidation; there was a little white cartilage-like material on the surface of group B, but the pore size of the material did not decrease significantly; in group D, the pore size of the material did not decrease significantly. Histological observation showed that there was no significant difference in the amount of bone collagen between groups at 2 weeks after operation (F=2.551, P=0.088); at 4, 8, and 12 weeks after operation, the amount of bone collagen in group C was significantly higher than that in other 3 groups, and that in group B was higher than that in group D (P<0.05); there was no significant difference between group A and groups B, D (P>0.05).ConclusionThe ability of heterotopic osteogenesis of tissue engineered bone constructed by co-culture VECs and ADSCs was the strongest.
OBJECTIVE: To determine an optimal co-culture ratio of the rabbit periosteal osteoblasts (RPOB) and rabbit renal vascular endothelial cells(RRVEC) without direct contact for future study of bone tissue engineering. METHODS: RPOB and RRVEC in the ratios of 1:0(control group), 2:1(group 1), 1:1(group 2) and 1:2(group 3) were co-cultured by six well plates and cell inserts. Four days later, the proliferation of RPOB and RRVEC were examined through cell count. Differentiated cell function was assessed by alkaline phosphatase (ALP) activity assay and 3H proline incorporation assay. RESULTS: When RPOB and RRVEC were indirectly co-cultured, the proliferation of RPOB and 3H proline incorporation was higher in group 1 than in the other experimental groups and control group (P lt; 0.05). ALP activity of RPOB was higher in group 1 than in control group and group 3 (P lt; 0.05), but there was no significant difference between group 1 and group 2 (P gt; 0.05). CONCLUSION: These results suggest that RPOB and RRVEC co-cultured in a ratio of 2:1 is optimal for future study of bone tissue engineering.