ObjectiveTo evaluate the clinical value of skin stretching device in repair of diabetic foot wound.MethodsA retrospective analysis was made on the clinical data of 48 cases with diabetic foot wound who were treated with skin stretching device (trial group, n=24) and with the vacuum sealing drainage combined with skin graft (control group, n=24) respectively between October 2015 and July 2016. There was no significant difference in gender, age, side, course of disease, TEXAS stage between 2 groups (P>0.05). Both patients in 2 groups were treated with sensitive antibiotics according to the results of bacterial culture.ResultsOne case in control group was infected and the skin graft failed, and 1 case in trial group was infected after the treatment, and the two wounds healed after symptomatic treatment. The wounds of the other patients healed successfully, and the healing time of the trial group was significantly shorter than that of the control group [(12.8±11.6) days vs. (22.3±10.4) days; t=2.987, P=0.005). All patients were followed up 3-12 months after operation, and no wound dehiscence or recurrence occurred during follow-up.ConclusionCompared with the vacuum sealing drainage combined with skin graft, the application of skin stretching device in the repair of diabetic foot wound has advantages, such as easy to operate, shorten the wound healing time, and the appearance of wound was similar with the adjacent skin.
OBJECTIVE To investigate clinical effects and possible mechanisms of various growth factors on impaired healing ulcers of patients with diabetic disease. METHODS Seventy-eight patients were divided into three groups; saline control, epidermal growth factor(EGF) experimental group, and platelet-derived wound healing factor (PDWHF) experimental group. General healing conditions, wound closing index, healing rates and histological changes of the patient’s ulcer wound were observed during 1-8 weeks after treatment. RESULTS The wound closing index and healing rate of ulcers were significantly increased in the EGF and PDWHF experimental groups compared with the control group, while the angiogenesis, fibroblast hyperplasia, and collagen deposit were more obvious in EGF and PDWHF experimental groups than that of control group. The promoting effects on wound healing in PDWHF experimental group were better than in EGF group. CONCLUSION It suggests that local application of certain growth factor alone or various growth factors together is an effective method to improve the condition of impaired healing of diabetic ulcers.
Objective
To explore the effect and mechanism of rapamycin and deferoxamin on wound healing after ischemia and hypoxia.
Methods
The model of ischemia and hypoxia wound was made on the back of 40 SPF male adult Sprague Dawley rats, weight (300±20) g; they were randomly divided into 4 groups (n=10): the control group (group A), deferoxamine intervention group (group B), rapamycin intervention group (group C), and deferoxamine+rapamycin intervention group (group D). At 3, 6, and 9 days after model preparation, rats of groups A, B, C, and D were intra-peritoneally injected with normal saline, deferoxamin (10 mg/kg), rapamycin (3 mg/kg), deferoxamin (10 mg/kg)+rapamycin (3 mg/kg) respectively. The wound healing was observed and the healing time was recorded in each group; the wound healing tissue was harvested to test the mRNA and protein expressions of mammalian target of rapamycin (mTOR), hypoxia inducible factor 1α (HIF-1α), and vascular endothelial growth factor (VEGF) by real-time fluorescence quantitative PCR and Western blot at 2 days after wound healing.
Results
All rats survived to the end of the experiment, and wounds healed; the healing time of groups A, B, and D was significantly shorter than that of group C (P<0.05), but there was no significant difference between groups A, B, and D (P>0.05). Real-time fluorescence quantitative PCR showed that the expression of mTOR mRNA in groups C and D was significantly decreased when compared with the expressions in groups A and B (P<0.05); there was significant difference between groups A and B (P<0.05), but no significant difference between groups C and D (P>0.05). The expressions of HIF-1α mRNA and VEGF mRNA were signi-ficantly higher in groups B and D than groups A and C, and in group A than group C (P<0.05), but there was no signifi-cant difference between groups B and D (P>0.05). Western blot showed that the relative expressions of mTOR protein in groups C and D were significantly decreased when compared with the expressions in groups A and B (P<0.05), but there was no significant difference between groups C and D (P>0.05). The relative expressions of HIF-1α protein in groups A, B, and C were significantly increased when compared with expression in group D (P<0.05), but there was no significant difference between groups A, B, and C (P>0.05). The relative expression of VEGF protein were significantly lower in groups B, C, and D than group A, in group D than groups B and C, and in group C than group B (P<0.05).
Conclusion
Defe-roxamin can promote the wound healing of rats after ischemia and hypoxia, and the effect of rapamycin is opposite. It may be related to the existence of mTOR and HIF-1 signaling pathway in chronic ischemia-hypoxia wound.
ObjectiveTo review the research progress of adrenergic β-antagonists on wounds and diabetic chronic cutaneous ulcers healing in recent years, and to investigate its application prospect in diabetic foot ulcer (DFU).MethodsThe latest literature about the role of adrenergic β-antagonists in wounds and diabetic chronic cutaneous ulcers healing was extensively reviewed, and the mechanisms of adrenergic β-antagonists for wounds and its potential benefit for DFU were analyzed thoroughly.ResultsThe adrenergic β-antagonists can accelerate the wound healing. The possible mechanisms include accelerating re-epithelialization, promoting angiogenesis, improving neuropathy, and regulating inflammation and growth factors, etc. At present clinical research data showed that the adrenergic β-antagonists may be an adjuvant treatment for diabetic chronic cutaneous ulcers.ConclusionAdrenergic β-antagonists maybe promote the healing of wounds and diabetic chronic cutaneous ulcers. However, more long-term follow-up and high-quality randomized control studies are needed to further verify their efficacy and safety for DFU.
摘要:目的:觀察超短波治療對痔術后創面愈合的影響。方法:將100例混合痔術后患者分為治療組和對照組各40例,治療組于術后24小時給予超短波治療和復方紫草油紗條換藥,對照組僅給以復方紫草油紗條換藥,觀察兩組創面愈合時間和創面上皮生長速度。結果:治療組較對照組創面愈合時間更短(Plt;0.01),創面上皮生長速度更快(Plt;0.01)。結論〗:超短波治療能夠加速痔術后創面愈合時間,減少痛苦,療效確切安全。Abstract: Objective: To observe the clinical efficacy of ultrashort wave on the healing of wound after operation for hemorrhoids. Methods: One hundred cases of disease subjected to operation were divided into the treatment group (50 cases) and the control group (50 cases).The treatment group had been given ultrashort wave 24 hours after operation and Fufangzicaoyousa ointment gauze. The control group had been give Fufangzicaoyousa ointment gauze. Results: The results showed that the woundhealing time was much shorter in the treatment group than in the control group (Plt;0.01), the epidermis growth was much faster in the treatment group than in he control group (Plt;0.01). Conclusion: Ultrashort wave can promote the healing of wound after the operation for hemorrhoids and relieve pain, and it can be externally used safely.
A drug vaccarin loaded polymer poly (vinyl alcohol) (PVA)-stilbazole quaternized (SbQ)/Zein was prepared in this study, using co-electrospun method. Then the morphologies and structures of PVA-SbQ/Zein composite nanofibers were observed by scanning electron microscope (SEM) and Fourier transform infrared spectrum (FTIR), respectively. Finally, biocompatibility of PVA-SbQ/Zein nanofibers with drug and without drug was evaluated. Results showed that vaccarin-loaded PVA-SbQ/Zein nanofibers had smooth surface and showed non-toxic to L929 cells. Drug vaccarin could promote cells attachment on nanofibers. The wound healing performance was examined in vivo by rat skin models and histological observations, and PVA-SbQ/Zein/vaccarin nanofibers showed better wound healing performance than petrolatum gauze group.
ObjectiveTo investigate the effects of adipose-derived stem cell released exosomes (ADSC-Exos) on wound healing in diabetic mice.MethodsThe ADSCs were isolated from the adipose tissue donated by the patients and cultured by enzymatic digestion. The supernatant of the 3rd generation ADSCs was used to extract Exos (ADSC-Exos). The morphology of ADSC-Exos was observed by transmission electron microscopy. The membrane-labeled proteins (Alix and CD63) were detected by Western blot, and the particle size distribution was detected by nanoparticle tracking analyzer. The fibroblasts were isolated from the skin tissue donated by the patients and cultured by enzymatic digestion. The 5th generation fibroblasts were cultured with PKH26-labeled ADSC-Exos, and observed by confocal fluorescence microscopy. The effects of ADSC-Exos on proliferation and migration of fibroblasts were observed with cell counting kit 8 (CCK-8) and scratch method. Twenty-four 8-week-old Balb/c male mice were used to prepare a diabetic model. A full-thickness skin defect of 8 mm in diameter was prepared on the back. And 0.2 mL of ADSC-Exos and PBS were injected into the dermis of the experimental group (n=12) and the control group (n=12), respectively. On the 1st, 4th, 7th, 11th, 16th, and 21st days, the wound healing was observed and the wound healing rate was calculated. On the 7th, 14th, and 21st days, the histology (HE and Masson) and CD31 immunohistochemical staining were performed to observe the wound structure, collagen fibers, and neovascularization.ResultsADSC-Exos were the membranous vesicles with clear edges and uniform size; the particle size was 40-200 nm with an average of 102.1 nm; the membrane-labeled proteins (Alix and CD63) were positive. The composite culture observation showed that ADSC-Exos could enter the fibroblasts and promote the proliferation and migration of fibroblasts. Animal experiments showed that the wound healing of the experimental group was significantly faster than that of the control group, and the wound healing rate was significantly different at each time point (P<0.05). Compared with the control group, the wound healing of the experimental group was better. There were more microvessels in the early healing stage, and more deposited collagen fibers in the late healing stage. There were significant differences in the length of wound on the 7th, 14th, and 21st days, the number of microvessels on the 7th and 14th days, and the rate of deposited collagen fibers on the 14th and 21st days between the two groups (P<0.05).ConclusionADSC-Exos can promote the wound healing in diabetic mice by promoting angiogenesis and proliferation and migration of fibroblasts and collagen synthesis.
Objective
To review the effect of dipeptidyl peptidase 4 (DPP-4) inhibitors on the wound healing and its mechanisms in chronic diabetic foot ulcers.
Methods
The latest literature concerning DPP-4 inhibitors for chronic diabetic foot ulcers was extensively reviewed, as well as the potential benefit and mechanism of DPP-4 inhibitors on wound healing of diabetic foot ulcers was analyzed thoroughly.
Results
DPP-4 inhibitors can accelerated the ulcer healing. The mechanisms probably include inhibiting the expression of the matrix metalloproteinase (MMP) and restoring the balance of the wound MMP and the tissue inhibitors of MMP; promoting recruitment of endothelial progenitor cells and augmenting angiogenesis; optimizing extracellular matrix construction and the immune response to persistent hypoxia in chronic diabetes wounds, and so on. At present, clinical researches show that DPP-4 inhibitors may be considered as an adjuvant treatment for chronic diabetic foot ulcers.
Conclusion
DPP-4 inhibitors show promise in the local wound healing of chronic diabetic foot ulcers. However, more strictly designed, adequately powered, long-term follow-up, and high-quality randomized control trials are needed to further verify their efficacy and safety for chronic diabetic foot ulcers.
ObjectiveTo explore the research progress of hair follicle and related stem cells in scar-free skin healing in recent years.MethodsThe literature related to hair follicle and related stem cells, wound healing, and scar formation in recent years was extensively reviewed and summarized from the aspects of cell function and molecular mechanism.ResultsScar tissue after wound healing treated with hair follicle transplantation and related stem cell therapy is more mild or even without scar formation. The cell types and molecular mechanisms of the above phenomena are complex, and the bone morphogenetic protein signal transduction pathway and Wnt signal transduction pathway are strongly correlated.ConclusionThe research of hair follicle and related stem cells in scar-free skin healing is at the initial stage at present. Strengthening the mechanism research may provide new ideas for the treatment of wound and scar.
Objective
To review the research progress of chronic wound debridement.
Methods
The recent related literature concerning the mechanisms, advantages, limitations, and indications of the technologies of chronic wound debridement was extensively consulted, reviewed, and summarized.
Results
Debridement is essential for chronic wound healing, which includes autolytic debridement, enzymatic debridement, biodebridement, mechanical debridement, sharp/surgical debridement, ultrasound debridement, hydrosurgery debridement, and coblation debridement. Each technique has its own advantages and disadvantages.
Conclusion
There are many types of technologies of chronic wound debridement, which can be chosen according to clinical conditions. It is showed there are more significant advantages associated with the technique of coblation debridement relatively, which also has greater potential. Further study is needed to improve its efficacy.