| 1. |
Shetty S, Suvarna R, Awasthi A, et al. Emerging biomarkers and innovative therapeutic strategies in diabetic kidney disease: a pathway to precision medicine[J/OL]. Diagnostics (Basel), 2025, 15(8): 973[2025-04-11]. https://pubmed.ncbi.nlm.nih.gov/40310350/. DOI: 10.3390/diagnostics15080973.
|
| 2. |
Ricciardi CA, Gnudi L. Kidney disease in diabetes: from mechanisms to clinical presentation and treatment strategies[J/OL]. Metabolism, 2021, 124: 154890[2021-09-22]. https://pubmed.ncbi.nlm.nih.gov/34560098/. DOI: 10.1016/j.metabol.2021.154890.
|
| 3. |
Das S, Devi Rajeswari V, Venkatraman G, et al. Current updates on metabolites and its interlinked pathways as biomarkers for diabetic kidney disease: a systematic review[J]. Transl Res, 2024, 265: 71-87. DOI: 10.1016/j.trsl.2023.11.002.
|
| 4. |
Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 1: 3-15. DOI: 10.1111/dom.14007.
|
| 5. |
De Boer IH, Khunti K, Sadusky T, et al. Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO)[J]. Kidney Int, 2022, 102(5): 974-989. DOI: 10.1016/j.kint.2022.08.012.
|
| 6. |
Szczech LA, Stewart RC, Su HL, et al. Primary care detection of chronic kidney disease in adults with type-2 diabetes: the ADD-CKD study (awareness, detection and drug therapy in type 2 diabetes and chronic kidney disease)[J/OL]. PLoS One, 2014, 9(11): e110535[2014-11-26]. https://pubmed.ncbi.nlm.nih.gov/25427285/. DOI: 10.1371/journal.pone.0110535.
|
| 7. |
Manski-Nankervis JE, Thuraisingam S, Lau P, et al. Screening and diagnosis of chronic kidney disease in people with type 2 diabetes attending Australian general practice[J]. Aust J Prim Health, 2018, 24(3): 280-286. DOI: 10.1071/PY17156.
|
| 8. |
Mueller C, Neusser T, Thate-Waschke I, et al. Disease awareness in patients with type 2 diabetes: analysis of baseline data from the SMART-finder observational study[J/OL]. JMIR Form Res, 2025, 9: e60246[2025-02-18]. https://pubmed.ncbi.nlm.nih.gov/39964736/. DOI: 10.2196/60246.
|
| 9. |
Chen Z, Malek V, Natarajan R. Update: the role of epigenetics in the metabolic memory of diabetic complications[J]. Am J Physiol Renal Physiol, 2024, 327(3): 327-339. DOI: 10.1152/ajprenal.00115.2024.
|
| 10. |
Yang J, Liu D, Liu Z. Integration of metabolomics and proteomics in exploring the endothelial dysfunction mechanism induced by serum exosomes from diabetic retinopathy and diabetic nephropathy patients[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 830466[2022-03-25]. https://pubmed.ncbi.nlm.nih.gov/35399949/. DOI: 10.3389/fendo.2022.830466.
|
| 11. |
Wong CW, Wong TY, Cheng CY, et al. Kidney and eye diseases: common risk factors, etiological mechanisms, and pathways[J]. Kidney Int, 2014, 85(6): 1290-1302. DOI: 10.1038/ki.2013.491.
|
| 12. |
Hsing SC, Lee CC, Lin C, et al. The severity of diabetic retinopathy is an independent factor for the progression of diabetic nephropathy[J/OL]. J Clin Med, 2020, 10(1): 3[2020-12-22]. https://pubmed.ncbi.nlm.nih.gov/33374974/. DOI: 10.3390/jcm10010003.
|
| 13. |
Aljefri S, Al Adel F. The validity of diabetic retinopathy screening using nonmydriatic fundus camera and optical coherence tomography in comparison to clinical examination[J]. Saudi J Ophthalmol, 2021, 34(4): 266-272. DOI: 10.4103/1319-4534.322617.
|
| 14. |
明帥, 姚溪, 謝坤鵬, 等. 糖尿病視網膜病變人工智能自動診斷系統在社區和醫院老年糖尿病患者中的應用效果分析[J]. 中華眼底病雜志, 2022, 38(2): 120-125. DOI: 10.3760/cma.j.cn511434-20210429-00224.Ming S, Yao X, Xie KP, et al. Application effect analysis of artificial intelligence automatic diagnosis system for diabetic retinopathy in elderly diabetic patients in community and hospital[J]. Chin J Ocul Fundus Dis, 2022, 38(2): 120-125. DOI: 10.3760/cma.j.cn511434-20210429-00224.
|
| 15. |
Wang J, Wang YX, Zeng D, et al. Artificial intelligence-enhanced retinal imaging as a biomarker for systemic diseases[J]. Theranostics, 2025, 15(8): 3223-3233. DOI: 10.7150/thno.100786.
|
| 16. |
姚裕鋒, 陳振宇, 梁慧嫻, 等. 眼動脈或視網膜動脈阻塞患者年齡校正Charlson合并癥指數與缺血性腦卒中風險的關聯性[J]. 中華眼底病雜志, 2022, 39(5): 387-393. DOI: 10.3760/cma.j.cn511434-20220623-00382.Yao YF, Chen ZY, Liang HX, et al. Association between age-adjusted Charlson comorbidity index and risk of ischemic stroke in patients with ophthalmic or retinal artery occlusion[J]. Chin J Ocul Fundus Dis, 2022, 39(5): 387-393. DOI: 10.3760/cma.j.cn511434-20220623-00382.
|
| 17. |
Messica S, Presil D, Hoch Y, et al. Enhancing stroke risk and prognostic timeframe assessment with deep learning and a broad range of retinal biomarkers[J/OL]. Artif Intell Med, 2024, 154: 102927[2024-06-28]. https://pubmed.ncbi.nlm.nih.gov/38991398/. DOI: 10.1016/j.artmed.2024.102927.
|
| 18. |
White T, Selvarajah V, Wolfhagen-Sand F, et al. Prediction of cardiovascular risk factors from retinal fundus photographs: validation of a deep learning algorithm in a prospective non-interventional study in Kenya[J]. Diabetes Obes Metab, 2024, 26(7): 2722-2731. DOI: 10.1111/dom.15587.
|
| 19. |
Pan Q, Tong M. Artificial intelligence in predicting chronic kidney disease prognosis. A systematic review and meta-analysis[J/OL]. Ren Fail, 2024, 46(2): 2435483[2024-12-11]. https://pubmed.ncbi.nlm.nih.gov/39663146/. DOI: 10.1080/0886022X.2024.2435483.
|
| 20. |
American Diabetes Association Professional Practice Committee. 2. diagnosis and classification of diabetes: standards of care in diabetes-2024[J]. Diabetes Care, 2024, 47(Suppl 1): S20-42. DOI: 10.2337/dc24-S002.
|
| 21. |
Fung TH, Patel B, Wilmot EG, et al. Diabetic retinopathy for the non-ophthalmologist[J]. Clin Med (Lond), 2022, 22(2): 112-116. DOI: 10.7861/clinmed.2021-0792.
|
| 22. |
Farrah TE, Dhillon B, Keane PA, et al. The eye, the kidney, and cardiovascular disease: old concepts, better tools, and new horizons[J]. Kidney Int, 2020, 98(2): 323-342. DOI: 10.1016/j.kint.2020.01.039.
|
| 23. |
Zhang L, Yuan M, An Z, et al. Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: a cross-sectional study of chronic diseases in central China[J/OL]. PLoS One, 2020, 15(5): e0233166[2020-05-14]. https://pubmed.ncbi.nlm.nih.gov/32407418/. DOI: 10.1371/journal.pone.0233166.
|
| 24. |
Eriksson MI, Hietala K, Summanen P, et al. Stroke incidence increases with diabetic retinopathy severity and macular edema in type 1 diabetes[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 136[2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/38664827/. DOI: 10.1186/s12933-024-02235-w.
|
| 25. |
Cheung CY, Xu D, Cheng CY, et al. A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre[J]. Nat Biomed Eng, 2021, 5(6): 498-508. DOI: 10.1038/s41551-020-00626-4.
|
| 26. |
Zou LX, Wang X, Hou ZL, et al. Machine learning algorithms for diabetic kidney disease risk predictive model of Chinese patients with type 2 diabetes mellitus[J/OL]. Ren Fail, 2025, 47(1): 2486558[2025-04-07]. https://pubmed.ncbi.nlm.nih.gov/40195601/. DOI: 10.1080/0886022X.2025.2486558.
|
| 27. |
Zhang K, Liu X, Xu J, et al. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images[J]. Nat Biomed Eng, 2021, 5(6): 533-545. DOI: 10.1038/s41551-021-00745-6.
|
| 28. |
Betzler BK, Chee EYL, He F, et al. Deep learning algorithms to detect diabetic kidney disease from retinal photographs in multiethnic populations with diabetes[J]. J Am Med Inform Assoc, 2023, 30(12): 1904-1914. DOI: 10.1093/jamia/ocad179.
|
| 29. |
Wei L, Osman S, Hatt M, et al. Machine learning for radiomics-based multimodality and multiparametric modeling[J]. Q J Nucl Med Mol Imaging, 2019, 63(4): 323-338. DOI: 10.23736/S1824-4785.19.03213-8.
|
| 30. |
Zhao W, Huang X, Wang G, et al. PET/MR fusion texture analysis for the clinical outcome prediction in soft-tissue sarcoma[J/OL]. Cancer Imaging, 2022, 22(1): 7[2022-01-12]. https://pubmed.ncbi.nlm.nih.gov/35022071/. DOI: 10.1186/s40644-021-00438-y.
|