| 1. |
Zhang N, Wang J, Li Y, et al. Prevalence of primary open angle glaucoma in the last 20 years: a meta-analysis and systematic review[J/OL]. Sci Rep, 2021, 11(1): 13762[2021-07-02]. https://pubmed.ncbi.nlm.nih.gov/34215769/. DOI: 10.1038/s41598-021-92971-w.
|
| 2. |
Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090. DOI: 10.1016/j.ophtha.2014.05.013.
|
| 3. |
中華醫學會眼科學分會青光眼學組, 中國醫師協會眼科醫師分會青光眼學組. 中國青光眼指南(2020年)[J]. 中華眼科雜志, 2020, 56(8): 573-586. DOI: 10.3760/cma.j.cn112142-20200313-00182.Glaucoma Group of Ophthalmology Branch of Chinese Medical Association, Glaucoma Group of Chinese Ophthalmologist Association. The Chinese glaucoma guidelines (2020)[J]. Chin J Ophthalmol, 2020, 56(8): 573-586. DOI: 10.3760/cma.j.cn112142-20200313-00182.
|
| 4. |
Yusof AMZ, Othman O, Tang SF, et al. Diagnostic evaluation of optical coherence tomography parameters in normal, preperimetric and perimetric glaucoma patients[J]. Int J Ophthalmol, 2022, 15(11): 1782-1790. DOI: 10.18240/ijo.2022.11.08.
|
| 5. |
Hood DC, De Moraes CG. Challenges to the common clinical paradigm for diagnosis of glaucomatous damage with OCT and visual fields[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 788-791. DOI: 10.1167/iovs.17-23713.
|
| 6. |
Hammel N, Belghith A, Weinreb RN, et al. Comparing the rates of retinal nerve fiber layer and ganglion cell-inner plexiform layer loss in healthy eyes and in glaucoma eyes[J]. Am J Ophthalmol, 2017, 178: 38-50. DOI: 10.1016/j.ajo.2017.03.008.
|
| 7. |
Gmeiner JM, Schrems WA, Mardin CY, et al. Comparison of Bruch's membrane opening minimum rim width and peripapillary retinal nerve fiber layer thickness in early glaucoma assessment[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 575-584. DOI: 10.1167/iovs.15-18906.
|
| 8. |
Gardiner SK, Boey PY, Yang H, et al. Structural measurements for monitoring change in glaucoma: comparing retinal nerve fiber layer thickness with minimum rim width and area[J]. Invest Ophthalmol Vis Sci, 2015, 56(11): 6886-6891. DOI: 10.1167/iovs.15-16701.
|
| 9. |
Enders P, Adler W, Schaub F, et al. Novel Bruch's membrane opening minimum rim area equalizes disc size dependency and offers high diagnostic power for glaucoma[J]. Invest Ophthalmol Vis Sci, 2016, 57(15): 6596-6603. DOI: 10.1167/iovs.16-20561.
|
| 10. |
Kwon YH, Fingert JH, Kuehn MH, et al. Primary open-angle glaucoma[J]. N Engl J Med, 2009, 360(11): 1113-1124. DOI: 10.1056/NEJMra0804630.
|
| 11. |
Yousefi S. Clinical applications of artificial intelligence in glaucoma[J]. J Ophthalmic Vis Res, 2023, 18(1): 97-112. DOI: 10.18502/jovr.v18i1.12730.
|
| 12. |
Thanapaisal S, Uttakit P, Ittharat W, et al. Machine learning technology in the classification of glaucoma severity using fundus photographs[J/OL]. Sci Rep, 2025, 15(1): 26151[2025-07-18]. https://pubmed.ncbi.nlm.nih.gov/40681609/. DOI: 10.1038/s41598-025-11697-1.
|
| 13. |
Yang WYL, Wong HJ, Fu CE, et al. Artificial intelligence in the prediction of glaucoma development and progression: a systematic review[J]. Surv Ophthalmol, 2025, 71(1): 235-247. DOI: 10.1016/j.survophthal.2025.06.006.
|
| 14. |
Huang X, Islam MR, Akter S, et al. Artificial intelligence in glaucoma: opportunities, challenges, and future directions[J/OL]. Biomed Eng Online, 2023, 22(1): 126[2023-12-16]. https://pubmed.ncbi.nlm.nih.gov/38102597/. DOI: 10.1186/s12938-023-01187-8.
|
| 15. |
Hoang TT, Van Bui A, Nguyen V, et al. Comparison of perimetric glaucoma staging systems in Asians with primary glaucoma[J]. Eye (Lond), 2021, 35(3): 973-978. DOI: 10.1038/s41433-020-1012-z.
|
| 16. |
Berenguer-Vidal R, Verdú-Monedero R, Morales-Sánchez J, et al. Decision trees for glaucoma screening based on the asymmetry of the retinal nerve fiber layer in optical coherence tomography[J/OL]. Sensors (Basel), 2022, 22(13): 4842[2022-06-27]. https://pubmed.ncbi.nlm.nih.gov/35808338/. DOI: 10.3390/s22134842.
|
| 17. |
Chauhan BC, O'leary N, Almobarak FA, et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter[J]. Ophthalmology, 2013, 120(3): 535-543. DOI: 10.1016/j.ophtha.2012.09.055.
|
| 18. |
Enders P, Adler W, Kiessling D, et al. Evaluation of two-dimensional Bruch's membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort[J]. Acta Ophthalmol, 2019, 97(1): 60-67. DOI: 10.1111/aos.13698.
|
| 19. |
Li R, Wang X, Wei Y, et al. Diagnostic capability of different morphological parameters for primary open-angle glaucoma in the Chinese population[J/OL]. BMC Ophthalmol, 2021, 21(1): 151[2021-03-25]. https://pubmed.ncbi.nlm.nih.gov/33765982/. DOI: 10.1186/s12886-021-01906-6.
|
| 20. |
Sullivan-Mee M, Ruegg CC, Pensyl D, et al. Diagnostic precision of retinal nerve fiber layer and macular thickness asymmetry parameters for identifying early primary open-angle glaucoma[J]. Am J Ophthalmol, 2013, 156(3): 567-577. DOI: 10.1016/j.ajo.2013.04.037.
|
| 21. |
張迪, 張水華, 肖錚, 等. Bruch膜開口-最小盤沿寬度在開角型青光眼中的應用[J]. 眼科學報, 2023, 38(7): 526-534. DOI: 10.12419/2301020001.Zhang D, Zhang SH, Xiao Z, et al. Application of Bruch's membrane opening minimum rim width in open-angle glaucoma[J]. Eye Science, 2023, 38(7): 526-534. DOI: 10.12419/2301020001.
|
| 22. |
董雯潔, 張麗娜. BMO-MRW增強對原發性開角型青光眼患者的診斷能力[J]. 臨床醫學進展, 2025, 15(5): 2137-2148. DOI: 10.12677/acm.2025.1551602.Dong WJ, Zhang LN. Enhanced detection on optic neuropathy in patients with primary open-angle glucoma ysing BMO-MRW[J]. Adv Clin Med, 2025, 15(5): 2137-2148. DOI: 10.12677/acm.2025.1551602.
|
| 23. |
Park D, Park SP, Na KI. Comparison of retinal nerve fiber layer thickness and Bruch's membrane opening minimum rim width thinning rate in open-angle glaucoma[J/OL]. Sci Rep, 2022, 12(1): 16069[2022-09-27]. https://pubmed.ncbi.nlm.nih.gov/36167787/. DOI: 10.1038/s41598-022-20423-0.
|
| 24. |
Wu CW, Shen HL, Lu J, et al. Comparison of different machine learning classifiers for glaucoma diagnosis based on spectralis OCT[J/OL]. Diagnostics (Basel), 2021, 11(9): 1718[2021-09-19]. https://pubmed.ncbi.nlm.nih.gov/34574059/. DOI: 10.3390/diagnostics11091718.
|
| 25. |
Lin PW, Chang HW, Lai IC, et al. Intraocular retinal thickness asymmetry in early stage of primary open angle glaucoma and normal tension glaucoma[J]. Int J Ophthalmol, 2018, 11(8): 1342-1351. DOI: 10.18240/ijo.2018.08.15.
|
| 26. |
Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma[J/OL]. PLoS One, 2017, 12(5): e0177726[2017-05-23]. https://pubmed.ncbi.nlm.nih.gov/28542342/. DOI: 10.1371/journal.pone.0177726.
|
| 27. |
Seo SB, Cho HK. Deep learning classification of early normal-tension glaucoma and glaucoma suspects using Bruch's membrane opening-minimum rim width and RNFL[J/OL]. Sci Rep, 2020, 10(1): 19042[2020-11-04]. https://pubmed.ncbi.nlm.nih.gov/33149191/. DOI: 10.1038/s41598-020-76154-7.
|
| 28. |
Rodríguez-Robles F, Verdú-Monedero R, Berenguer-Vidal R, et al. Analysis of the asymmetry between both eyes in early diagnosis of glaucoma combining features extracted from retinal images and OCTs into classification models[J/OL]. Sensors (Basel), 2023, 23(10): 4737[2023-05-14]. https://pubmed.ncbi.nlm.nih.gov/37430650/. DOI: 10.3390/s23104737.
|