| 1. |
Perry L, Malkin R. Effectiveness of medical equipment donations to improve health systems: how much medical equipment is broken in the developing world?. Med Biol Eng Comput, 2011, 49(7): 719-722.
|
| 2. |
種銀保. 臨床工程師規范化培訓教程. 北京: 科學出版社, 2017: 24-27.
|
| 3. |
Webber C M, Martínez-Gálvez G, Higuita M L, et al. Developing strategies for sustainable medical equipment maintenance in under-resourced settings. Ann Glob Health, 2020, 86(1): 39.
|
| 4. |
周東華, 胡艷艷. 動態系統的故障診斷技術. 自動化學報, 2009, 35(6): 748-758.
|
| 5. |
潘海洋, 鄭近德, 楊宇, 等. 基于 CELCD 和 MFVPMCD 的智能故障診斷方法研究. 電子學報, 2017, 45(3): 546-551.
|
| 6. |
Deng L, Yu D. Deep learning: methods and applications. Foundations & Trends in Signal Processing, 2014, 7(3): 197-387.
|
| 7. |
陳偉宏, 安吉堯, 李仁發, 等. 深度學習認知計算綜述. 自動化學報, 2017, 43(11): 1886-1897.
|
| 8. |
Schmidhuber J. Deep learning in neural networks. Amsterdam: Elsevier Science Ltd, 2015.
|
| 9. |
周念成, 廖建權, 王強鋼, 等. 深度學習在智能電網中的應用現狀分析與展望. 電力系統自動化, 2019, 43(4): 180-191.
|
| 10. |
上官偉, 孟月月, 楊嘉明, 等. 基于 LSTM-BP 級聯網絡的列控車載設備故障診斷. 北京交通大學學報, 2019, 43(1): 54-62.
|
| 11. |
Huang Y Q. The research on aero-engine gas path fault diagnosis by genetic algorithm-BP neural network. Machine Tool & Hydraulics, 2015, 43(18): 31-36.
|
| 12. |
Guo X, Chen L, Shen C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement, 2016, 93(7): 490-502.
|
| 13. |
Felix A G, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM. Neural Comput, 2000, 12(10): 2451-2471.
|
| 14. |
Wang Weifeng, Qiu Xuehuan, Chen Caisen, et al. Application research on long short-term memory network in fault diagnosis//2018 International Conference on Machine Learning and Cybernetics (ICMLC), Chengdu: IEEE, 2018: 360-365.
|
| 15. |
王維鋒, 邱雪歡, 孫劍橋, 等. 基于雙層長短時記憶網絡的齒輪故障診斷方法. 裝甲兵工程學院學報, 2018, 32(2): 81-85.
|
| 16. |
de Bruin T, Verbert K, Babuska R. Railway track circuit fault diagnosis using recurrent neural networks. IEEE Trans Neural Netw Learn Syst, 2017, 28(3): 523-533.
|
| 17. |
劉香君, 種銀保, 肖晶晶, 等. 基于數據驅動的設備電路板無圖紙故障診斷. 中國醫學物理學雜志, 2020, 37(8): 1047-1052.
|
| 18. |
Ma Yixuan, Zhang Zhenji. Travel mode choice prediction using deep neural networks with entity embeddings. IEEE Access, 2020, 8: 64959-64970.
|
| 19. |
宋勇, 蔡志平. 大數據環境下基于信息論的入侵檢測數據歸一化方法. 武漢大學學報: 理學版, 2018, 64(2): 121-126.
|
| 20. |
Wang Xi, Li Qiang, Xie Zhihong. New Feature Selection Method Based on SVM-RFE. Advanced Materials Research, 2014, 926-930: 3100-3104.
|
| 21. |
Graves A. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Heidelberg: Springer, 2012.
|
| 22. |
楊麗, 吳雨茜, 王俊麗, 等. 循環神經網絡研究綜述. 計算機應用, 2018, 38(s2): 1-6, 26.
|
| 23. |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. International Conference on Neural Information Processing Systems, 2012, 1: 1097-1105.
|
| 24. |
Torfi A, Iranmanesh S M, Nasrabadi N, et al. 3D convolutional neural networks for cross audio-visual matching recognition. IEEE Access, 2017, 5: 22081-22091.
|
| 25. |
Li W, Meng Y. Improving the performance of neural networks with random forest in detecting network intrusions//The 10th International Symposium on Neural Networks (ISNN), 2013, 7952: 622-629.
|
| 26. |
葉靖雯, 吳曉峰. 端到端深度圖像分割網絡中抑制無效率學習的目標損失函數設計. 微電子學與計算機, 2019, 36(9): 38-43.
|
| 27. |
Hasnain M, Pasha M F, Ghani I, et al. Evaluating trust prediction and confusion matrix measures for web services ranking. IEEE Access, 2020, 8: 90847-90861.
|
| 28. |
Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks//30th International Conference on Machine Learning (ICML'13), Atlanta: International Machine Learning Society (IMLS), 2013, 28(3): 1310-1318.
|
| 29. |
Yao Yuan, Rosasco L, Caponnetto A. On early stopping in gradient descent learning. Constr Approx, 2007, 26(2): 289-315.
|