| 1. |
樊瑜波. 可穿戴醫療/健康技術——生物醫學工程的機遇和挑戰. 生物醫學工程學雜志, 2016, 33(1): 1.
|
| 2. |
Blank A A, French J A, Pehlivan A U, et al. Current trends in robot-assisted upper-limb stroke rehabilitation: Promoting patient engagement in therapy. Curr Phys Med Rehabil Rep, 2014, 2(3): 184-195.
|
| 3. |
黃小海, 喻洪流, 王金超, 等. 中央驅動式多自由度上肢康復訓練機器人研究. 生物醫學工程學雜志, 2018, 35(3): 452-459.
|
| 4. |
王露露, 胡鑫, 胡杰, 等. 一種上肢外骨骼康復機器人的控制系統研究. 生物醫學工程學雜志, 2016, 33(6): 1168-1175.
|
| 5. |
李夢曉, 馮麗娟, 張福蓉, 等. 鏡像視覺反饋療法在康復訓練中的研究進展. 中國康復理論與實踐, 2017, 23(12): 1403-1406.
|
| 6. |
Sarasola-Sanz A, Irastorza-Landa N, López-Larraz E, et al. Design and efectiveness evaluation of mirror myoelectric interfaces: a novel method to restore movement in hemiplegic patients. Sci Rep, 2018, 8(1): 16688.
|
| 7. |
Wang W W, Fu L C. Mirror therapy with an exoskeleton upper-limb robot based on IMU measurement system//IEEE International Workshop on Medical Measurements & Applications. Bari: IEEE, 2011: 370-375.
|
| 8. |
Gao Y, Su Y, Dong W, et al. Intention detection in upper limb kinematics rehabilitation using a GP-based control strategy//IEEE/RSJ International Conference on Intelligent Robots & Systems(IROS). Hamburg: IEEE, 2015: 5032-5038.
|
| 9. |
Kim H J, Lee G C, Song C H. Effect of functional electrical stimulation with mirror therapy on upper extremity motor function in poststroke patients. J Stroke Cerebrovasc, 2014, 23(4): 655-661.
|
| 10. |
Kojima K, Ikuno K, Morii Y, et al. Feasibility study of a combined treatment of electromyography-triggered neuromuscular stimulation and mirror therapy in stroke patients: A randomized crossover trial. Neurorehabilitation, 2014, 34(2): 235.
|
| 11. |
Stevens J A, Stoykov M E P. Using motor imagery in the rehabilitation of hemiparesis. Arch Phys Med Rehabil, 2003, 84(7): 1090-1092.
|
| 12. |
Ding L, Wang X, Guo X, et al. Camera-based mirror visual feedback: Potential to improve motor preparation in stroke patients. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(9): 1897-1905.
|
| 13. |
Tang S, Lin C, Barsotti M, et al. Kinematic synergy of multi-DoF movement in upper limb and its application for rehabilitation exoskeleton motion planning. Front Neurorobot, 2019, 13(99): 1-13.
|
| 14. |
Rakesh K, Niclas B, Gutierrez-Farewik E M, et al. A survey of human shoulder functional kinematic representations. Med Biol Eng Comput, 2019, 57: 339-367.
|
| 15. |
Niyetkaliyev A S, Hussain S, Ghayesh M H, et al. Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Trans Hum-Mach Syst, 2017, 47(6): 1134-1145.
|
| 16. |
Sabatelli S, Galgani M, Fanucci L, et al. A double-stage kalman filter for orientation tracking with an integrated processor in 9-D IMU. IEEE Trans Instrum Meas, 2013, 62(3): 590-598.
|
| 17. |
Watanabe T, Miyazawa T, Shibasaki J. A study on IMU-based stride length estimation for motor disabled subjects: A comparison under different calculation methods of rotation matrix//IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). Las Vegas: IEEE, 2018: 70-73.
|
| 18. |
李洪興. 變論域自適應模糊控制器. 中國科學: E輯, 1999, 25(1): 32-42.
|
| 19. |
郭海剛, 李洪興, 胡凱. 一類變論域自適應模糊控制器. 模糊系統與數學, 2011, 25(6): 1-9.
|
| 20. |
邵誠, 董希文, 王曉芳. 變論域模糊控制器伸縮因子的選擇方法. 信息與控制, 2010, 39(5): 536-541.
|
| 21. |
Kozuki T, Mizoguchi H, Asano Y, et al. Design methodology for the thorax and shoulder of human mimetic musculoskeletal humanoid Kenshiro—a thorax structure with rib like surface//IEEE/RSJ International Conference on Intelligent Robots & Systems. Vilamoura: IEEE, 2012: 3687-3692.
|
| 22. |
吳常鋮, 宋愛國, 曾洪, 等. 基于sEMG和GRNN的手部輸出力估計. 儀器儀表學報, 2017, 38(1): 97-104.
|
| 23. |
Greff K, Srivastava R K, Koutnik J, et al. LSTM: A search space odyssey. IEEE Trans Neural Netw Learn Syst, 2016, 28(10): 2222-2232.
|