| 1. |
Jessen F, Amariglio R E, Buckley R F, et al. The characterisation of subjective cognitive decline. Lancet Neurol, 2020, 19(3): 271-278.
|
| 2. |
Ismail Z, Smith E E, Geda Y, et al. Neuropsychiatric symptoms as early manifestations of emergent dementia: provisional diagnostic criteria for mild behavioral impairment. Alzheimer's & Dementia, 2016, 12(2): 195-202.
|
| 3. |
Atri A. The Alzheimer’s disease clinical spectrum: diagnosis and management. Medical Clinics, 2019, 103(2): 263-293.
|
| 4. |
Creese B, Brooker H, Ismail Z, et al. Mild behavioral impairment as a marker of cognitive decline in cognitively normal older adults. The American Journal of Geriatric Psychiatry, 2019, 27(8): 823-834.
|
| 5. |
Saleh M, Reimer J, Penn R, et al. Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron, 2010, 65(4): 461-471.
|
| 6. |
Lakatos P, Karmos G, Mehta A D, et al. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 2008, 320(5872): 110-113.
|
| 7. |
Holz E M, Glennon M, Prendergast K, et al. Theta–gamma phase synchronization during memory matching in visual working memory. Neuroimage, 2010, 52(1): 326-335.
|
| 8. |
趙杰, 歐陽周玲, 丁雪桐, 等. 認知障礙的進展對腦功能連接梯度的影響. 神經損傷與功能重建, 2022, 17(1): 23-27, 46.
|
| 9. |
Kosko B. Fuzzy entropy and conditioning. Information Sciences, 1986, 40(2): 165-174.
|
| 10. |
Huang L Y, Sun Q X, Cheng J Z, et al. Prediction of epileptic seizures using bispectrum analysis of electroencephalograms and artificial neural network//Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Mexico: IEEE, 2003, 3: 2947-2949.
|
| 11. |
Schack B, Vath N, Petsche H, et al. Phase-coupling of theta–gamma EEG rhythms during short-term memory processing. International Journal of Psychophysiology, 2002, 44(2): 143-163.
|
| 12. |
Palva J M, Palva S, Kaila K. Phase synchrony among neuronal oscillations in the human cortex. Journal of Neuroscience, 2005, 25(15): 3962-3972.
|
| 13. |
Yanagisawa T, Yamashita O, Hirata M, et al. Regulation of motor representation by phase–amplitude coupling in the sensorimotor cortex. Journal of Neuroscience, 2012, 32(44): 15467-15475.
|
| 14. |
Ahnaou A, Moechars D, Raeymaekers L, et al. Emergence of early alterations in network oscillations and functional connectivity in a tau seeding mouse model of Alzheimer’s disease pathology. Scientific Reports, 2017, 7(1): 14189.
|
| 15. |
閆彥, 肖莎莎, 劉夢, 等. 輕度認知障礙老年人腦電的非線性相互依賴腦網絡分析. 中國生物醫學工程學報, 2021, 40(6): 662-673.
|
| 16. |
Liu C J, Huang C F, Chou C Y, et al. Age- and disease-related features of task-related brain oscillations by using mutual information. Brain and Behavior, 2012, 2(6): 754-762.
|
| 17. |
Batzaya T, Heejoung H. VGG-C Transform model with batch normalization to predict Alzheimer’s disease through MRI dataset. Electronics, 2022, 11(16): 2601.
|
| 18. |
Lashgari E, Liang D, Maoz U. Data augmentation for deep-learning-based electroencephalography. Journal of Neuroscience Methods, 2020, 346: 108885.
|
| 19. |
葛軼洲, 許翔, 楊鎖榮, 等. 序列數據的數據增強方法綜述. 計算機科學與探索, 2021, 15(7): 1207-1219.
|
| 20. |
吳越, 趙進法, 楊宏宇, 等. 老年人快速認知篩查量表在社區人群應用的效度研究. 中華行為醫學與腦科學雜志, 2019, 28(9): 854-859.
|
| 21. |
Delorme A, Makeig S. EEGLAB: an open-source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 2004, 134(1): 9-21.
|
| 22. |
黃偉鍵. 基于數據增強和深度學習的腦電信號分類研究. 廣州: 廣州大學, 2021.
|
| 23. |
Mormann F, Fell J, Axmacher N, et al. Phase/amplitude reset and theta–gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus, 2005, 15(7): 890-900.
|
| 24. |
劉建偉, 趙會丹, 羅雄麟, 等. 深度學習批歸一化及其相關算法研究進展. 自動化學報, 2020, 46(6): 1090-1120.
|
| 25. |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
|
| 26. |
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
| 27. |
Kutyniok G. Discussion of: “Nonparametric regression using deep neural networks with ReLU activation function”. The Annals of Statistics, 2020, 48(4): 1902-1905.
|
| 28. |
Li X, Yang C, Xie P, et al. The diagnosis of amnestic mild cognitive impairment by combining the characteristics of brain functional network and support vector machine classifier. Journal of Neuroscience Methods, 2021, 363: 109334.
|
| 29. |
劉佳星. 基于網格搜索超參數優化的支持向量回歸. 科學技術創新, 2022(13): 71-74.
|
| 30. |
Richman J S, Moorman R J. Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6): H2039-H2049.
|
| 31. |
Nakhnikian A, Ito S, Dwiel L L, et al. A novel cross-frequency coupling detection method using the generalized Morse wavelets. Journal of Neuroscience Methods, 2016, 269: 61-73.
|
| 32. |
Mazzoni A, Whittingstall K, Brunel N, et al. Understanding the relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local cortical network model. Neuroimage, 2010, 52(3): 956-972.
|
| 33. |
Canolty R T, Knight R T. The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 2010, 14(11): 506-515.
|
| 34. |
Kendrick K M, Zhan Y, Fischer H, et al. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex. BMC Neuroscience, 2011, 12: 55.
|
| 35. |
Friese U, K?ster M, Hassler U, et al. Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. Neuroimage, 2013, 66: 642-647.
|