| 1. |
Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-Cancer J Clin, 2021, 71(3): 209-249.
|
| 2. |
Yuen M, Hou J, Chutaputti A. Asia Pacific working party on prevention of hepatocellular C. Hepatocellular carcinoma in the Asia pacific region. J Gastroenterol Hepatol, 2009, 24(3): 346-353.
|
| 3. |
Asia-Pacific Working Party on Prevention of Hepatocellular Carcinoma. Prevention of hepatocellular carcinoma in the Asia–Pacific region: Consensus statements. J Gastroen Hepatol, 2010, 25(4): 657-663.
|
| 4. |
Yang J D, Hainaut P, Gores G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604.
|
| 5. |
Ally A, Balasundaram M, Carlsen R, et al. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell, 2017, 169(7): 1327-1341.e23.
|
| 6. |
Nagtegaal I D, Odze R D, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology, 2020, 76(2): 182.
|
| 7. |
Ziol M, Poté N, Amaddeo G, et al. Macrotrabecular‐massive hepatocellular carcinoma: a distinctive histological subtype with clinical relevance. Hepatology, 2018, 68(1): 103-112.
|
| 8. |
Jeon Y, Benedict M, Taddei T, et al. Macrotrabecular hepatocellular carcinoma. Am J Surg Pathol, 2019, 43(7): 943-948.
|
| 9. |
Rhee H, Cho E-S, Nahm J H, et al. Gadoxetic acid-enhanced MRI of macrotrabecular-massive hepatocellular carcinoma and its prognostic implications. J Hepatol, 2021, 74(1): 109-121.
|
| 10. |
Galle P R, Forner A, Llovet J M, et al. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol, 2018, 69(1): 182-236.
|
| 11. |
Association K L C. 2022 KLCA-NCC Korea practice guidelines for the management of hepatocellular carcinoma. Korean J Radiol, 2022, 23(12): 1126.
|
| 12. |
Xie D-Y, Ren Z-G, Zhou J, et al. 2019 Chinese clinical guidelines for the management of hepatocellular carcinoma: updates and insights. Hepatobil Surg Nutr, 2020, 9(4): 452.
|
| 13. |
Zhu Y, Weng S, Li Y, et al. A radiomics nomogram based on contrast-enhanced MRI for preoperative prediction of macrotrabecular-massive hepatocellular carcinoma. Abdom Radiol, 2021, 46: 3139-3148.
|
| 14. |
Feng Z, Li H, Liu Q, et al. CT radiomics to predict macrotrabecular-massive subtype and immune status in hepatocellular carcinoma. Radiology, 2022, 307(1): e221291.
|
| 15. |
He X, Li K, Wei R, et al. A multitask deep learning radiomics model for predicting the macrotrabecular-massive subtype and prognosis of hepatocellular carcinoma after hepatic arterial infusion chemotherapy. Radiol Med, 2023, 128: 1508-1520.
|
| 16. |
Li M, Fan Y, You H, et al. Dual-energy CT deep learning radiomics to predict macrotrabecular-massive hepatocellular carcinoma. Radiology, 2023, 308(2): e230255.
|
| 17. |
Zhang Y, He D, Liu J, et al. Preoperative prediction of macrotrabecular-massive hepatocellular carcinoma through dynamic contrast-enhanced magnetic resonance imaging-based radiomics. World J Gastroentero, 2023, 29(13): 2001.
|
| 18. |
Lambin P, Leijenaar R T, Deist T M, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017, 14(12): 749-762.
|
| 19. |
Gillies R J, Kinahan P E, Hricak H. Radiomics: images are more than pictures, they are data. Radiology, 2016, 278(2): 563-577.
|
| 20. |
Dercle L, Lu L, Schwartz L H, et al. Radiomics response signature for identification of metastatic colorectal cancer sensitive to therapies targeting EGFR pathway. Natl Cancer I, 112(9): 902-912.
|
| 21. |
Hu S, Kang Y, Xie Y, et al. 18F-FDG PET/CT-based radiomics nomogram for preoperative prediction of macrotrabecular-massive hepatocellular carcinoma: a two-center study. Abdom Radiol, 2023, 48(2): 532-542.
|
| 22. |
Hu S, Xie Y, Yang T, et al. Tumor metabolism derived from 18F-FDG PET/CT in predicting the macrotrabecular-massive subtype of hepatocellular carcinoma. Quant Imaging Med Surg, 2023, 13(1): 309.
|
| 23. |
Feng Z, Li H, Zhao H, et al. Preoperative CT for characterization of aggressive macrotrabecular-massive subtype and vessels that encapsulate tumor clusters pattern in hepatocellular carcinoma. Radiology, 2021, 300(1): 219-229.
|
| 24. |
Mulé S, Galletto Pregliasco A, Tenenhaus A, et al. Multiphase liver MRI for identifying the macrotrabecular-massive subtype of hepatocellular carcinoma. Radiology, 2020, 295(3): 562-571.
|
| 25. |
Ramachandram D, Taylor G W. Deep multimodal learning: A survey on recent advances and trends. IEEE Signal Process Mag, 2017, 34(6): 96-108.
|
| 26. |
Stahlschmidt S R, Ulfenborg B, Synnergren J. Multimodal deep learning for biomedical data fusion: a review. Briefings Bioinf, 2022, 23(2): bbab569.
|
| 27. |
Shinde P P, Shah S. A review of machine learning and deep learning applications// Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation. Pune: IEEE, 2018: 1-6.
|
| 28. |
Van Griethuysen J J, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res, 2017, 77(21): e104-e107.
|
| 29. |
Chen J, Xia C, Duan T, et al. Macrotrabecular-massive hepatocellular carcinoma: imaging identification and prediction based on gadoxetic acid–enhanced magnetic resonance imaging. Eur Radio, 2021, 31: 7696-7704.
|