| 1. |
趙宇督, 彭振偉, 馬駿, 等. 基于多尺度注意力機制的三維卷積神經網絡肺結節檢測算法. 生物醫學工程學雜志, 2022, 39(2): 320-328.
|
| 2. |
Doshi R, Hiran K K, Doppala B P, et al. Deep belief network-based image processing for local directional segmentation in brain tumor detection. Journal of Electronic Imaging, 2023, 32(6): 062502.
|
| 3. |
Wu S, Hong G, Xu A, et al. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study. Lancet Oncol, 2023, 24(4): 360-370.
|
| 4. |
史彩娟, 鄭遠帆, 任弼娟, 等. 單域泛化X-ray乳腺腫瘤檢測. 中國圖象圖形學報, 2024, 29(3): 725-740.
|
| 5. |
周濤, 葉鑫宇, 趙雅楠, 等. 跨模態注意力YOLOv5的PET/CT肺部腫瘤檢測. 中國圖象圖形學報, 2024, 29(4): 1070-1084.
|
| 6. |
Sunnetci K M, Kaba E, Celiker F B, et al. Deep network-based comprehensive parotid gland tumor detection. Acad Radiol, 2024, 31(1): 157-167.
|
| 7. |
Huang A, Guo D Z, Zhang X, et al. Serial circulating tumor DNA profiling predicts tumor recurrence after liver transplantation for liver cancer. Hepatol Int, 2024, 18(1): 254-264.
|
| 8. |
Manjunath R V, Ghanshala A, Kwadiki K. Deep learning algorithm performance evaluation in detection and classification of liver disease using CT images. Multimedia Tools and Applications, 2024, 83: 2773-2790.
|
| 9. |
Gao C, Wu L, Wu W, et al. Deep learning in pulmonary nodule detection and segmentation: a systematic review. European Radiology, 2025, 35(1): 255-266.
|
| 10. |
周濤, 趙雅楠, 陸惠玲, 等. 醫學圖像實例分割: 從有候選區域向無候選區域. 生物醫學工程學雜志, 2022, 39(6): 1218-1232.
|
| 11. |
Liu F, Chen Z, Sun P. Detection and segmentation of pulmonary nodules based on improved 3D VNet algorithm//International Conference on Algorithms, Microchips and Network Applications (AMNA), Zhuhai: SPIE, 2022: 51-59.
|
| 12. |
Naseer I, Akram S, Masood T, et al. Lung cancer classification using modified U-Net based lobe segmentation and nodule detection. IEEE Access, 2023, 11: 60279-60291.
|
| 13. |
汪華登, 王雪馨, 黎兵兵, 等. GZMH: 用于有絲分裂細胞核檢測和分割的乳腺癌病理圖像數據集. 中國圖象圖形學報, 2024, 29(3): 608-619.
|
| 14. |
Do?an K, Sel?uk T, Alkan A. An enhanced mask R-CNN approach for pulmonary embolism detection and segmentation. Diagnostics, 2024, 14(11): 1102-1113.
|
| 15. |
Sirazitdinov I, Kholiavchenko M, Mustafaev T, et al. Deep neural network ensemble for pneumonia localization from a large-scale chest X-ray database. Computers & Electrical Engineering, 2019, 78: 388-399.
|
| 16. |
Sreelakshmi S, Malu G, Sherly E, et al. M-Net: an encoder-decoder architecture for medical image analysis using ensemble learning. Results in Engineering, 2023, 17: 100927.
|
| 17. |
Patil S, Kirange D. Ensemble of deep learning models for brain tumor detection. Procedia Computer Science, 2023, 218: 2468-2479.
|
| 18. |
Munshi R M, Cascone L, Alturki N, et al. A novel approach for breast cancer detection using optimized ensemble learning framework and XAI. Image and Vision Computing, 2024, 142: 104910.
|
| 19. |
Albuquerque C, Henriques R, Castelli M. Deep learning-based object detection algorithms in medical imaging: systematic review. Heliyon, 2025, 11(1): e41137.
|
| 20. |
魏然, 林侃如, 郭翌, 等. 基于影像組學預測胰腺囊性腫瘤Ki67分子標記物的可行性研究. 生物醫學工程學雜志, 2019, 36(1): 1-6.
|
| 21. |
李影, 邱麗華. 宮頸癌MRI影像組學研究現狀及進展. 中國醫學影像技術, 2023, 39(9): 1407-1410.
|
| 22. |
Tortora M, Gemini L, Scaravilli A, et al. Radiomics applications in head and neck tumor imaging: a narrative review. Cancers, 2023, 15(4): 1174.
|
| 23. |
祁納, 趙軍. 基于MRI影像組學和機器學習診斷抑郁癥研究進展. 中國醫學影像技術, 2024, 40(3): 455-458.
|
| 24. |
魏江龍, 喬英. CT影像組學在腎細胞癌診斷與個性化治療中的研究進展. 分子影像學雜志, 2025, 48(8): 1050-1056.
|
| 25. |
吳樹劍, 俞詠梅, 范莉芳,等. 基于增強CT深度學習影像組學術前預測胸腺瘤風險分類. 中國腫瘤臨床, 2023, 50(19): 999-1005.
|
| 26. |
Yang D, Ren G, Ni R, et al. Deep learning attention-guided radiomics for COVID-19 chest radiograph classification. Quantitative Imaging in Medicine and Surgery, 2023, 13(2): 572-584.
|
| 27. |
Xia T, Zhao B, Li B, et al. MRI-based radiomics and deep learning in biological characteristics and prognosis of hepatocellular carcinoma: opportunities and challenges. Journal of Magnetic Resonance Imaging, 2024, 59(3): 767-783.
|
| 28. |
李宇璞, 趙鵬飛, 張小娟, 等. MRI影像組學聯合ResNet101深度學習鑒別腰椎布魯氏菌性脊柱炎與脊柱轉移癌. 中國醫學影像技術, 2025, 41(6): 958-962.
|
| 29. |
Cai Z, Vasconcelos N. Cascade R-CNN: high quality object detection and instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498.
|
| 30. |
Tan M, Pang R, Le Q V. Efficientdet: scalable and efficient object detection//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle: IEEE, 2020: 10781-10790.
|
| 31. |
Wang S, Zhu Y, Lee S, et al. Global-local attention network with multi-task uncertainty loss for abnormal lymph node detection in MR images. Medical Image Analysis, 2022, 77: 102345.
|
| 32. |
Li F, Zhang H, Xu H, et al. Mask dino: towards a unified transformer-based framework for object detection and segmentation//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver: IEEE, 2023: 3041-3050.
|
| 33. |
Jiang Y, Chang S, Wang Z. TransGAN: two pure transformers can make one strong GAN, and that can scale up. Advances in Neural Information Processing Systems, 2021, 34: 14745-14758.
|
| 34. |
Tran M, Vo-Ho V K, Le N T. 3DConvCaps: 3DUnet with convolutional capsule encoder for medical image segmentation//International Conference on Pattern Recognition (ICPR), Bangalore: IEEE, 2022: 4392-4398.
|
| 35. |
Hatamizadeh A, Tang Y, Nath V, et al. UNETR: transformers for 3D medical image segmentation//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), New York: IEEE, 2022: 574-584.
|
| 36. |
Liu Y, Zhang J, She Z, et al. SAMM (segment any medical model): a 3D slicer integration to sam. arXiv preprint, 2023, arXiv: 2304.05622.
|