| 1. |
Tataei S N, Ranjbarzadeh R, Jafarzadeh G S, et al. Glioma brain tumor segmentation in four MRI modalities using a convolutional neural network and based on a transfer learning method// Iano Y, Saotome O, Kemper Vásquez G L, et al. Proceedings of the 7th Brazilian Technology Symposium (BTSym’21). BTSym 2021. Smart Innovation, Systems and Technologies. Cham: Springer, 2021, 207: 386-402.
|
| 2. |
Mancuso V, Bruni F, Stramba-Badiale C, et al. How do emotions elicited in virtual reality affect our memory? A systematic review. Comput Hum Behav, 2023, 146: 107812.
|
| 3. |
Balwant M K. A review on convolutional neural networks for brain tumor segmentation: methods, datasets, libraries, and future directions. IRBM, 2022, 43(6): 521-537.
|
| 4. |
Aziz P A, Memon S F, Hussain M, et al. Supratotal resection: An emerging concept of glioblastoma multiforme surgery—systematic review and meta-analysis. World Neurosurg, 2023, 179: e46-e55.
|
| 5. |
Jyothi P, Singh A R. Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review. Artif Intell Rev, 2023, 56(4): 2923-2969.
|
| 6. |
Padmapriya T, Sriramakrishnan P, Kalaiselvi T, et al. Advancements of MRI-based brain tumor segmentation from traditional to recent trends: a review. Curr Med Imaging Rev, 2022, 18(12): 1261-1275.
|
| 7. |
Ranjbarzadeh R, Bagherian Kasgari A, Jafarzadeh Ghoushchi S, et al. Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci Rep, 2021, 11(1): 10930.
|
| 8. |
Zhou R, Wang J, Xia G, et al. Cascade residual multiscale convolution and mamba-structured U-Net for advanced brain tumor image segmentation. Entropy, 2024, 26(5): 385.
|
| 9. |
Wu X, Yang X, Li Z, et al. Multimodal brain tumor image segmentation based on DenseNet. Plos One, 2024, 19(1): e0286125.
|
| 10. |
Zhu Z, Wang Z, Qi G, et al. Brain tumor segmentation in MRI with multi-modality spatial information enhancement and boundary shape correction. Pattern Recogn, 2024, 153: 110553.
|
| 11. |
Kazerooni A F, Khalili N, Liu X, et al. The brain tumor segmentation (BraTS) challenge 2023: focus on pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDS). arXiv, 2024: 2305.17033.
|
| 12. |
Alam M A, Sohel A, Hasan K M, et al. Advancing brain tumor detection using machine learning and artificial intelligence: a systematic literature review of predictive models and diagnostic accuracy. Strateg Data Manag Innov, 2024, 1(1): 37-55.
|
| 13. |
Sailunaz K, Alhajj S, ?zyer T, et al. A survey on brain tumor image analysis. Med Biol Eng Comput, 2024, 62(1): 1-45.
|
| 14. |
Zhao F, Zhang C, Geng B. Deep multimodal data fusion. Acm Comput Surv, 2024, 56(9): 1-36.
|
| 15. |
Wu X, Hong D, Chanussot J. UIU-Net: U-Net in U-Net for infrared small object detection. IEEE Trans Image Process, 2022, 32: 364-376.
|
| 16. |
Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. U-Net++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging, 2019, 39(6): 1856-1867.
|
| 17. |
Liu X, Pang Y, Jin R, et al. Dual-domain reconstruction network with V-Net and K-Net for fast MRI. Magn Reson Med, 2022, 88(6): 2694-2708.
|
| 18. |
Vossough A, Khalili N, Familiar A M, et al. Training and comparison of nnU-Net and DeepMedic methods for autosegmentation of pediatric brain tumors. Am J Neuroradiol, 2024, 45(8): 1081-1089.
|
| 19. |
Vahedifard F, Liu X, Kocak M, et al. Artificial intelligence in fetal resting-state functional MRI brain segmentation: a comparative analysis of 3D U-Net, V-Net, and HighRes-Net models. arXiv, 2023: 2311.10844.
|
| 20. |
Isensee F, Jaeger P F, Kohl S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods, 2021, 18(2): 203-211.
|
| 21. |
Ranjbarzadeh R, Caputo A, Tirkolaee E B, et al. Brain tumor segmentation of MRI images: a comprehensive review on the application of artificial intelligence tools. Comput Biol Med, 2023, 152: 106405.
|
| 22. |
Ramya P, Thanabal M S, Dharmaraja C. Brain tumor segmentation using cluster ensemble and deep super learner for classification of MRI. J Amb Intel Hum Comp, 2021, 12(10): 9939-9952.
|
| 23. |
Guan X, Zhao Y, Nyatega C O, et al. Brain tumor segmentation network with multi-view ensemble discrimination and kernel-sharing dilated convolution. Brain Sci, 2023, 13(4): 650.
|
| 24. |
Kamnitsas K, Bai W, Ferrante E, et al. Ensembles of multiple models and architectures for robust brain tumour segmentation. arXiv, 2017: 1711.01468.
|
| 25. |
Zeineldin R A, Karar M E, Burgert O, et al. Multimodal CNN networks for brain tumor segmentation in MRI: a BraTS 2022 challenge solution// Bakas S, Crimi A, Baid U, et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science. Cham: Springer, 2023, 13769: 127-137.
|
| 26. |
Zeineldin R A, Karar M E, Coburger J, et al. DeepSeg: deep neural network framework for automatic brain tumor segmentation using magnetic resonance FLAIR images. Int J Comput Ass Rad, 2020, 15(6): 909-920.
|
| 27. |
Gong Q, Chen Y, He X, et al. DeepScan: exploiting deep learning for malicious account detection in location-based social networks. IEEE Commun Mag, 2018, 56(11): 21-27.
|
| 28. |
Hu J, Gu X, Gu X. Mutual ensemble learning for brain tumor segmentation. Neurocomputing, 2022, 504: 68-81.
|
| 29. |
Kamnitsas K, Ledig C, Newcombe V F J, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal, 2017, 36: 61-78.
|
| 30. |
張奕涵, 柏正堯, 尤逸琳, 等. 自適應模態融合雙編碼器MRI腦腫瘤分割網絡. 中國圖象圖形學報, 2024, 29(3): 768-781.
|
| 31. |
蕭飛鵬, 宋亞男, 徐榮華, 等. 基于多編碼器的腦腫瘤分割算法研究. 無線互聯科技, 2024, 21(8): 71-76.
|
| 32. |
方新林, 方艷紅, 王迪. 基于多模態特征融合的腦瘤圖像分割方法. 中國醫學物理學雜志, 2022, 39(6): 682-689.
|
| 33. |
Aboussaleh I, Riffi J, Fazazy K E, et al. Efficient U-Net architecture with multiple encoders and attention mechanism decoders for brain tumor segmentation. Diagnostics, 2023, 13(5): 872.
|
| 34. |
丁熠, 鄭偉, 耿技, 等. 基于多層級并行神經網絡的多模態腦腫瘤圖像分割框架. 中國圖象圖形學報, 2023, 28(7): 2182-2194.
|
| 35. |
陳柏年, 韓雨童, 何濤, 等. 基于級聯動態注意力U-Net的腦腫瘤分割方法. 計算機科學, 2023, 50(S2): 1031-1037.
|
| 36. |
Ullah F, Nadeem M, Abrar M, et al. Brain tumor segmentation from MRI images using handcrafted convolutional neural network. Diagnostics, 2023, 13(16): 2650.
|
| 37. |
Saleh A H, Atila ü, Menemencio?lu O. Multimodal fusion for enhanced semantic segmentation in brain tumor imaging: integrating deep learning and guided filtering via advanced 3D semantic segmentation architectures. Int J Imag Sys Tech, 2024, 34(5): e23152.
|
| 38. |
Bouchet P, Deloges J B, Canton-Bacara H, et al. An efficient cascade of U-Net-like convolutional neural networks devoted to brain tumor segmentation// Bakas S, Crimi A, Baid U, et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science. Cham: Springer, 2023, 13769: 149-161.
|
| 39. |
Jia H, Cai W, Huang H, et al. H2NF-Net for brain tumor segmentation using multimodal MR imaging: 2nd place solution to BraTS Challenge 2020 segmentation task// Crimi A, Bakas S. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science. Cham: Springer, 2021, 12659: 58-68.
|
| 40. |
Baid U, Shah N A, Talbar S. Brain tumor segmentation with cascaded deep convolutional neural network// Crimi A, Bakas S. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science. Cham: Springer, 2020, 11993: 90-98.
|
| 41. |
夏峰, 邵海見, 鄧星. 融合跨階段深度學習的腦腫瘤MRI圖像分割. 中國圖象圖形學報, 2022, 27(3): 873-884.
|
| 42. |
Liang J, Yang C, Zhong J, et al. BTSwin-Unet: 3D U-shaped symmetrical Swin transformer-based network for brain tumor segmentation with self-supervised pre-training. Neural Process Lett, 2023, 55(4): 3695-3713.
|