| 1. |
United Nations Department for Economic and Social Affairs. World social report 2023: Leaving no one behind in an ageing world. New York: United Nations, 2023.
|
| 2. |
Population Division of the United Nations Department of Economic and Social Affairs (UNDESA). World Population Prospects 2024: Summary of Results. New York: United Nations, 2024.
|
| 3. |
張思鋒, 張澤滈. 中國養老服務的人力資源困境與智能養老選擇. 西安交通大學學報(社會科學版), 2023, 43(6): 152-163.
|
| 4. |
王雅茹, 張凱秀. 智能機器人在醫院感控領域的發展前沿及應用現狀. 現代儀器與醫療, 2022, 28(6): 58-64.
|
| 5. |
Betriana F, Tanioka R, Gunawan J, et al. Healthcare robots and human generations: Consequences for nursing and healthcare. Collegian, 2022, 29(5): 767-773.
|
| 6. |
Cheng G, Huang Y, Zhang X, et al. An overview of transfer nursing robot: classification, key technology, and trend. Robot Auton Syst, 2024, 174: 104653.
|
| 7. |
Soyama R, Ishii S, Fukase A. Selectable operating interfaces of the meal-assistance device “My Spoon”. Adv Rehabil Robot, 2004: 155-163.
|
| 8. |
Irving M. Obi robot arm gives disabled diners a helping hand[EB/OL]. (2016-07-16)[2024-05-28]. https://newatlas.com/obi-robot-feeding-arm/44394/.
|
| 9. |
李彥濤, 張立勛, 趙奇, 等. 基于xPC的助餐機器人實時控制系統研究. 中國康復醫學雜志, 2011, 26(4): 363-366.
|
| 10. |
Roque A, Damodaran S K. Explainable AI for security of human-interactive robots. Int J Hum-Comput Int, 2022, 38(18-20): 1789-1807.
|
| 11. |
Jiang F, Jia R, Jiang X, et al. Human‐machine interaction methods for minimally invasive surgical robotic arms. Comput Intell Neurosci, 2022, 2022(1): 9434725.
|
| 12. |
Jiang S, Song W, Zhou Z, et al. Stability analysis of the food delivery robot with suspension damping structure. Heliyon, 2022, 8(12): e12127.
|
| 13. |
高從軍. 歐洲康復機器人發展現狀及前景. 機器人技術與應用, 1999(5): 1-4.
|
| 14. |
Mokhtari M, Feki M A, Abdulrazak B, et al. 3 Toward a human-friendly user interface to control an assistive robot in the context of smart homes// Bien Z Z, Stefanov D. Advances in rehabilitation robotics. Lecture Notes in Control and Information Science. Berlin, Heidelberg: Springer, 2004, 306: 47-56.
|
| 15. |
Topping M. Flexibot ?a multi-function general purpose service robot. Ind Robot, 2001, 28(5): 395-401.
|
| 16. |
Prenzel O, Feuser J, Graser A. Rehabilitation robot in intelligent home environment - software architecture and implementation of a distributed system// Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics. Chicago: IEEE, 2005: 530-535.
|
| 17. |
Layman F D. Self-feeding appliance: US4398857. 1983-08-16.
|
| 18. |
Kawamura K, Bagchi S. Intelligent robotic systems in service of the disabled. IEEE Trans Rehabil Eng, 1995, 3(1): 14-21.
|
| 19. |
Osborne W J. Self-feeding apparatus with hover mode: US06592315B2. 2003-07-15.
|
| 20. |
朱俊杰, 田野, 羅江紅. 可控式用餐機: CN200998019. 2008-01-02.
|
| 21. |
Pourmohammadali H. Design of a multiple-user intelligent feeding robot for elderly and disabled. Waterloo: University of Waterloo, 2007.
|
| 22. |
Takahashi Y, Suzukawa S. Intelligent robot human interface using cheek movement for severely handicapped persons. Kanagawa: InTech, 2008: 95-106.
|
| 23. |
Song W K, Song W J, Kim Y, et al. Usability test of KNRC self-feeding robot// 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). Seattle: IEEE, 2013: 1-5.
|
| 24. |
曾錦翔, 蓋克榮, 楊錦忠. 基于FPGA和ARM的桌面助餐機器人設計. 北京工業職業技術學院學報, 2017, 16(1): 22-25.
|
| 25. |
Guo M, Shi P, Yu H. Development a feeding assistive robot for eating assist// 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). Wuhan: IEEE, 2017: 299-304.
|
| 26. |
Perera C G, Lalitharatne T D, Kiguchi K. EEG-controlled meal assistance robot with camera-based automatic mouth position tracking and mouth open detection// 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017: 1760-1765.
|
| 27. |
許朋, 喻洪流, 石萍. 一種智能飲食護理機器人研究. 軟件, 2020, 41(9): 56-59.
|
| 28. |
Ha J, Kim L. A brain-computer interface-based meal-assist robot control system// 2021 9th International Winter Conference on Brain-Computer Interface (BCI). Gangwon: IEEE, 2021: 1-3.
|
| 29. |
李抒桐, 肖金壯, 孟恭, 等. 一種輔助進餐機器人的結構設計與性能分析. 生物醫學工程學雜志, 2022, 39(1): 149-157.
|
| 30. |
Chen R, Kim T K, Hwang J H, et al. A novel integrated spoon-chopsticks mechanism for a meal assistant robotic system. Int J Control Autom Syst, 2022, 20(9): 3019-3031.
|
| 31. |
Mashrur T, Ghulam Z, French G, et al. Assistive feeding robot for upper limb impairment-Testing and validation. Int J Adv Robot Syst, 2023: 1-13.
|
| 32. |
Keely M N, Nemlekar H, Losey D P. Kiri-spoon: a soft shape-changing utensil for robot-assisted feeding// 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Abu Dhabi: IEEE, 2024: 121-128.
|
| 33. |
Chen R, Kim T K, Jung B J, et al. Simple and effective strategies to pick up foods for a meal assistant robot integrated with an integrated spoon and chopstick mechanism. Intell Serv Robot, 2025, 18(2): 325-338.
|
| 34. |
Park D, Hoshi Y, Mahajan H P, et al. Toward active robot-assisted feeding with a general-purpose mobile manipulator: design, evaluation, and lessons learned. Robot Auton Syst, 2020, 124: 1-17.
|
| 35. |
Schultz J R, Slifkin A B, Yu H, et al. Proof-of-concept: a hands-free interface for robot-assisted self-feeding// 2022 International Conference on Rehabilitation Robotics (ICORR). Rotterdam: IEEE, 2022: 1-6.
|
| 36. |
Chen B X, Dhupia J S, Xu W. A chewing robot to assist quantitative food analysis: kinematics and fuzzy scheduling control. IEEE-ASME Trans Mechatron, 2023, 28(5): 2908-2918.
|
| 37. |
Li J, Sun W, Gu X, et al. A method for a compliant robot arm to perform a bandaging task on a swaying arm: A proposed approach. IEEE Robot Autom Mag, 2022, 30(1): 50-61.
|
| 38. |
Luo Qianyu, Zhang Xiuli, Wang Yuxin. Research on a biomimetic flexible ball joint with variable stiffness for robots. J Mech Robot, 2024, 16(10): 101009.
|
| 39. |
Wang G, Wen H, Zhou J. Indoor positioning technology and control of mobile home service robot. Sci Program, 2022, 2022(1): 1268393.
|
| 40. |
Hu Z, Lucchetti F, Schlesinger C, et al. Deploying and evaluating LLMs to program service mobile robots. IEEE Robot Autom Lett, 2024, 9(3): 2853-2860.
|
| 41. |
Ling H, Shabana A. Effect of forward kinematics on the motion-trajectory oscillations and inertia forces. J Sound Vibr, 2024, 577: 118332.
|
| 42. |
Dahiya A, Aroyo A M, Dautenhahn K, et al. A survey of multi-agent Human–Robot Interaction systems. Robot Auton Syst, 2023, 161: 104335.
|
| 43. |
李國寧, 陶亮, 孟京艷, 等. 基于交互力模糊識別的上肢康復機器人模式調整控制策略研究. 生物醫學工程學雜志, 2024, 41(1): 90-97.
|
| 44. |
Tebyani M, Spaeth A, Cramer N, et al. A geometric kinematic model for flexible voxel-based robots. Soft Robot, 2023, 10(3): 517-526.
|
| 45. |
Liu L, Gu X, Wang L, et al. Nonsingular predefined‐time dynamic surface control of a flexible‐joint space robot with actuator constraints. Int J Robust Nonlinear Control, 2024, 34(6): 4213-4233.
|
| 46. |
Hu Y, Zhang S, Chen Y. Trajectory planning method of 6-DOF modular manipulator based on polynomial interpolation. J Comput Methods Sci Eng, 2023, 23(3): 1589-1600.
|
| 47. |
Zeng C, Li S, Chen Z, et al. Multi-fingered robot hand compliant manipulation based on vision-based demonstration and adaptive force control. IEEE Trans Neural Netw Learn Syst, 2022, 34(9): 5452-5463.
|
| 48. |
Peng J, Wu H, Zhang C, et al. Modeling, cooperative planning and compliant control of multi-arm space continuous robot for target manipulation. Appl Math Model, 2023, 121: 690-713.
|
| 49. |
Alexandru I A D, Mandru D, Fenesan A C. Computer-vision based feeding robot for disabled people// 2024 IEEE International Conference And Exposition On Electric And Power Engineering (EPEi). Lasi: IEEE, 2024: 85-88.
|
| 50. |
Parikh P, Trivedi R, Dave J, et al. Design and development of a low-cost vision-based 6 DoF assistive feeding robot for the aged and specially-abled people. IETE J Res, 2023, 70(2): 1716-1744.
|
| 51. |
Gordon E K, Jenamani R K, Nanavati A, et al. An adaptable, safe, and portable robot-assisted feeding syste// Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. Boulder: ACM, 2024: 74-76.
|