| 1. |
World Heart Federation. World Heart Report 2023: confronting the world’s number one killer. Geneva, Switzerland: World Heart Federation, 2023.
|
| 2. |
楊瑤, 劉劍雄, 張蕓, 等. 大動脈粥樣硬化性腦卒中與心臟功能關系的臨床研究. 昆明醫科大學學報, 2022, 43(11): 107-111.
|
| 3. |
Frostegard J. Systemic lupus erythematosus and cardiovascular disease. Journal of Internal Medicine, 2023, 293(1): 48-62.
|
| 4. |
姚瑞晗, 張榆鋒, 施繼紅, 等. 頸動脈斑塊的超聲仿真及系統實現. 生物醫學工程學雜志, 2016, 33(6): 1095-1102.
|
| 5. |
Pilz N, Heinz V, Ax T, et al. Pulse wave velocity: methodology, clinical applications, and interplay with heart rate variability. Reviews in Cardiovascular Medicine, 2024, 25(7): 266.
|
| 6. |
劉寶華, 任曉華. 脈搏波傳導速度測量算法的研究及其進展. 生物醫學工程學雜志, 2010, 27(1): 231-235.
|
| 7. |
Zhong Q, Hu M J, Cui Y J, et al. Carotid–femoral pulse wave velocity in the prediction of cardiovascular events and mortality: an updated systematic review and meta-analysis. Angiology, 2018, 69(7): 617-629.
|
| 8. |
Nabeel P M, Kiran V R, Joseph J, et al. Local pulse wave velocity: theory, methods, advancements, and clinical applications. IEEE Reviews in Biomedical Engineering, 2020, 13: 74-112.
|
| 9. |
Manoj R, Kiran V R, Ponkalaivani S, et al. Measurement of local pulse wave velocity: agreement among various methodologies//2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Jeju Island: IEEE, 2023: 1-6.
|
| 10. |
鄧麗, 張榆鋒, 楊麗春, 等. 超聲傳輸時間法頸動脈脈搏波速估計精度及影響因素研究. 電子與信息學報, 2017, 39(2): 316-321.
|
| 11. |
鄧麗. 超聲傳輸時間法的人體頸動脈局域脈搏波速估計. 昆明: 云南大學, 2019.
|
| 12. |
Deng L, Zhang Y, Chen Z, et al. Regional upstroke tracking for transit time detection to improve the ultrasound-based local PWV estimation in carotid arteries. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(4): 691-702.
|
| 13. |
Deng L, Zhang Y, Mo H. Evaluation of TT-based local PWV estimation for different propagation velocities//Proceedings of the 2018 5th International Conference on Biomedical and Bioinformatics Engineering (ICBBE). Okinawa: HKCBEES, 2018: 42-46.
|
| 14. |
Jin W, Chowienczyk P, Alastruey J. Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms. PloS One, 2021, 16(6): e0245026.
|
| 15. |
Tavallali P, Razavi M, Pahlevan N M. Artificial intelligence estimation of carotid-femoral pulse wave velocity using carotid waveform. Scientific Reports, 2018, 8(1): 1014.
|
| 16. |
Garcia J M V, Bahloul M A, Laleg-Kirati T M. A multiple linear regression model for carotid-to-femoral pulse wave velocity estimation based on schrodinger spectrum characterization. Annu Int Conf IEEE Eng Med Biol Soc, 2022: 143-147.
|
| 17. |
Bahloul M A, Chahid A, Laleg-Kirati T M. A multilayer perceptron-based carotid-to-femoral pulse wave velocity estimation using ppg signal//2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). Athens: IEEE, 2021: 1-6.
|
| 18. |
Abrisham K P, Alipour K, Tarvirdizadeh B, et al. Advancing PPG-based cf-PWV estimation with an integrated CNN-BiLSTM-Attention model. Signal, Image and Video Processing, 2024, 18: 8621-8633.
|
| 19. |
Charlton P H, Mariscal H J, Vennin S, et al. Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexe. American Journal of Physiology-Heart and Circulatory Physiology, 2019, 317(5): H1062-H1085.
|
| 20. |
Alastruey J, Charlton P H, Bikia V, et al. Arterial pulse wave modeling and analysis for vascular-age studies: a review from VascAgeNet. American Journal of Physiology-Heart and Circulatory Physiology, 2023, 325(1): H1-H29.
|
| 21. |
Vargas J M, Bahloul M A, Laleg-Kirati T M. A learning-based image processing approach for pulse wave velocity estimation using spectrogram from peripheral pulse wave signals: an in silico study. Frontiers in Physiology, 2023, 14: 1100570.
|
| 22. |
Manoj R, Raj K V, Nabeel P M, et al. Arterial pressure pulse wave separation analysis using a multi-Gaussian decomposition model. Physiological Measurement, 2022, 43(5): 055005.
|
| 23. |
Charlton P H, Celka P, Farukh B, et al. Assessing mental stress from the photoplethysmogram: a numerical study. Physiological Measurement, 2018, 39(5): 054001.
|
| 24. |
Maqsood S, Xu S, Springer M, et al. A benchmark study of machine learning for analysis of signal feature extraction techniques for blood pressure estimation using photoplethysmography (PPG). IEEE Access, 2021, 9: 138817-138833.
|
| 25. |
Mukaka M M. A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 2012, 24(3): 69-71.
|
| 26. |
Liu Y, Sun L, Du C, et al. Near-infrared prediction of edible oil frying times based on Bayesian ridge regression. Optik, 2020, 218: 164950.
|
| 27. |
Halder R K, Uddin M N, Uddin M A, et al. Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications. Journal of Big Data, 2024, 11(1): 113.
|
| 28. |
Vedaldi A, Zisserman A. VGG convolutional neural networks practical. Department of Engineering Science, University of Oxford, 2017: 66.
|
| 29. |
Yin L X, Ma C Y, Wang S, et al. Reference values of carotid ultrafast pulse-wave velocity: a prospective, multicenter, population-based study. Journal of the American Society of Echocardiography, 2021, 34(6): 629-641.
|
| 30. |
Gu O, He B, Xiong L, et al. Reconstructive interpolation for pulse wave estimation to improve local PWV measurement of carotid artery. Med Biol Eng Comput, 2024, 62(5): 1459-1473.
|
| 31. |
Mo H, Lang X, Zhang Y, et al. Optimally filtering and matching processing for regional upstrokes to improve ultrasound transit time-based local PWV estimation. Computer Methods and Programs in Biomedicine, 2022, 224: 106997.
|
| 32. |
肖建, 于龍, 白裔峰. 支持向量回歸中核函數和超參數選擇方法綜述. 西南交通大學學報, 2008, 21(3): 297-303.
|
| 33. |
Salih A M, Raisi E Z, Galazzo I B, et al. A perspective on explainable artificial intelligence methods: SHAP and LIME. Advanced Intelligent Systems, 2025, 7(1): 2400304.
|
| 34. |
Wei C C. Developing an effective arterial stiffness monitoring system using the spring constant method and photoplethysmography. IEEE Transactions on Biomedical Engineering, 2013, 60(1): 151-154.
|
| 35. |
Ahn J M. New aging index using signal features of both photoplethysmograms and acceleration plethysmograms. Healthcare Informatics Research, 2017, 23(1): 53-59.
|
| 36. |
Morris D C. Clinical methods: the history, physical, and laboratory examinations. 3rd edition. Boston: Butterworths,1990: 112.
|
| 37. |
Schober P, Boer C, Schwarte L A. Correlation coefficients: appropriate use and interpretation. Anesth Analg, 2018, 126(5): 1763-1768.
|