| 1. |
Brown J A, Ashwat E, Warraich N, et al. Outcomes of surgical versus transcatheter aortic valve replacement in patients with low-flow, low-gradient aortic stenosis. J Thorac Cardiovasc Surg, 2025, 170(5): 1392-1401.
|
| 2. |
Tong Q, Cai J, Wang Z J, et al. Recent advances in the modification and improvement of bioprosthetic heart valves. Small, 2024, 20(23): e2309844.
|
| 3. |
Wei Y, Fan X L, Liu J Z, et al. A photo-triggered coating of prosthetic valve leaflet surface to realize antibacterial and thrombolysis on-demand. Chem Eng J, 2024, 479: 147438.
|
| 4. |
Iung B, Delgado V, Rosenhek R, et al. Contemporary presentation and management of valvular heart disease. Circulation, 2019, 140(14): 1156-1169.
|
| 5. |
Coffey S, Roberts-Thomson R, Brown A, et al. Global epidemiology of valvular heart disease. Nat Rev Cardiol, 2021, 18(12): 853-864.
|
| 6. |
Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J, 2021, 43(7): 561-632.
|
| 7. |
Praz F, Beyersdorf F, Haugaa K, et al. Valvular heart disease: from mechanisms to management. Lancet, 2024, 403(10436): 1576-1589.
|
| 8. |
Goldstone A B, Chiu P, Baiocchi M, et al. Mechanical or biologic prostheses for aortic-valve and mitral-valve replacement. New Engl J Med, 2017, 377(19): 1847-1857.
|
| 9. |
Stasiak J R, Serrani M, Biral E, et al. Design, development, testing at ISO standards and in vivo feasibility study of a novel polymeric heart valve prosthesis. Biomater Sci., 2020, 8(16): 4467-4480.
|
| 10. |
Kumar T, Singh A, Thakre S, et al. Scientific evolution of artificial heart valves: A narrative review. Cureus, 2023, 15(7): e42131.
|
| 11. |
Rezvova M A, Klyshnikov K Y, Gritskevich A A, et al. Polymeric heart valves will displace mechanical and tissue heart valves: A new era for the medical devices. Int J Mol Sci, 2023, 24(4): 3963.
|
| 12. |
劉晶鑫, 鄧小燕, 敖海勇, 等. 雙葉機械瓣膜不同植入角度對主動脈血流動力學的影響. 醫用生物力學, 2024, 39(4): 685-690.
|
| 13. |
陳昱欣, 陳詩萍, 王文碩, 等. 仿生人工心臟瓣膜材料的研究進展. 材料導報, 2023, 37(S2): 548-556.
|
| 14. |
Jenney C, Millson P, Grainger D W, et al. Assessment of a siloxane poly(urethane‐urea) elastomer designed for implantable heart valve leaflets. Adv NanoBiomed Res., 2020, 1(2): 2000032.
|
| 15. |
邵樹仁, 吳和成, 唐林, 等. 醫用聚氨酯材料的研究及應用進展. 聚氨酯工業, 2022, 37(2): 1-6.
|
| 16. |
Crago M, Winlaw D S, Farajikhah S, et al. Pediatric pulmonary valve replacements: Clinical challenges and emerging technologies. Bioeng Transl Med, 2023, 8(4): e10501.
|
| 17. |
Singh S K, Kachel M, Castillero E, et al. Polymeric prosthetic heart valves: A review of current technologies and future directions. Front Cardiovasc Med, 2023, 10: 1137827.
|
| 18. |
Guo F, Han R, Ying J S, et al. Bioinspired polymeric heart valves derived from polyurethane and natural cellulose fibers. J Mater Sci Technol, 2023, 144: 178-187.
|
| 19. |
Wang Y C, Fu Y L, Wang Q Y, et al. Recent advancements in polymeric heart valves: From basic research to clinical trials. Mater Today Bio, 2024, 28: 101194.
|
| 20. |
Li R L, Russ J, Paschalides C, et al. Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing. Biomaterials, 2019, 225: 119493.
|
| 21. |
Chen S P, Zhang B W, Hu J Y, et al. Bioinspired NiTi-reinforced polymeric heart valve exhibiting excellent hemodynamics and reduced stress. Composites Part B, 2023, 255: 110615.
|
| 22. |
Hu Y G, Xiong Y, Wei Y, et al. Polymeric artificial heart valves derived from modified diol-based polycarbonate polyurethanes. Acta Biomater, 2024, 190: 64-78.
|
| 23. |
Giaretta J, Crago M, Hoang T P, et al. Structural reinforcements as a strategy toward durable polymeric heart valves. Cell Rep Phys Sci, 2024, 5(3): 101870.
|
| 24. |
Todesco M, Lezziero G, Gerosa G, et al. Polymeric heart valves: Do they represent a reliable alternative to current prosthetic devices?. Polymers, 2025, 17(5): 557.
|
| 25. |
Wang Y J, Chen Y X, Wang W S, et al. Mechanical bionic compression resistant fiber/hydrogel composite artificial heart valve suitable for transcatheter surgery. Composites Part B, 2025, 296: 112234.
|
| 26. |
Oleksy M, Dynarowicz K, Aebisher D. Advances in biodegradable polymers and biomaterials for medical applications—A review. Molecules, 2023, 28(17): 6213.
|
| 27. |
陳泯含, 李繼偉, 劉若凡, 等. 聚異丁烯基生物彈性體研究進展. 彈性體, 2023, 33(3): 91-98.
|
| 28. |
Gaetano F D, Bagnoli P, Zaffora A, et al. A newly developed tri-leaflet polymeric heart valve prosthesis. J Mech Med Biol, 2015, 15(2): 1540009.
|
| 29. |
Zhou J Y, Li Y J, Li T, et al. Analysis of the effect of thickness on the performance of polymeric heart valves. J Funct Biomater, 2023, 14(6): 309.
|
| 30. |
Gulbulak U, Gecgel O, Ertas A. A deep learning application to approximate the geometric orifice and coaptation areas of the polymeric heart valves under time-varying transvalvular pressure. J Mech Behav Biomed Mater, 2021, 117: 104371.
|
| 31. |
Farokhi E A, Niroomand-Oscuii H, Yazdanpanah K. Investigation the effect of geometry and position of polymeric heart valves on hemodynamic with fluid-structure interaction numerical method. Med Eng Phys, 2021, 97: 10-17.
|
| 32. |
Liu X, Lee A, Wang Y, et al. Fluid-structure interaction analysis of bioinspired polymeric heart valves with experimental validation. Comput Methods Programs Biomed, 2025, 268: 108839.
|
| 33. |
Guo X N, Lin R, Zhang K, et al. Biomimetic multilayered polymeric heart valve featuring ultra-thin thickness and exceptional durability. Biochem Biophys Res Commun, 2025, 756: 151609.
|
| 34. |
Liu S H, Zheng X F, Cao Y Q, et al. Effect of initial opening morphology of polymeric valves on hemodynamic performance. Cardiovasc Eng Technol, 2025, 16(4): 481-492.
|
| 35. |
魏海洋, 李崢, 侯倩文, 等. 運動模式對高分子心臟瓣膜浸漬厚度分布影響. 醫用生物力學, 2025, 40(4): 1012-1019.
|
| 36. |
Swanson W M, Clark R E. Dimensions and geometric relationships of the human aortic value as a function of pressure. Circ Res, 1974, 35(6): 871-882.
|
| 37. |
侯倩文, 劉桂梅, 劉寧, 等. 主動脈根部擴張情況下竇部直徑對瓣膜開閉性能的影響. 生物醫學工程學雜志, 2019, 36(5): 737-744.
|
| 38. |
李慧, 潘友聯, 喬愛科, 等. 瓣膜高度對移植主動脈瓣開閉性能的影響. 生物醫學工程學雜志, 2019, 36(2): 199-205.
|
| 39. |
Tango A M, Monteleone A, Ducci A, et al. Analysis of the haemodynamic changes caused by surgical and transcatheter aortic valve replacements by means fluid-structure interaction simulations. Comput Biol Med, 2025, 186: 109673.
|
| 40. |
韓恩慧, 侯倩文, 肖洋, 等. 不同類型主動脈瓣偏心放置下瓣后流場特性的粒子圖像測速實驗研究. 醫用生物力學, 2025, 40(1): 25-33.
|
| 41. |
LSTC. ICFD theory manual: Incompressible fluid solver in LS-DYNA. Livermore: LSTC, 2014.
|
| 42. |
楊新華, 陳傳堯. 疲勞與斷裂. 第2版. 武漢: 華中科技大學出版社, 2018.
|